Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-25T14:52:05.079Z Has data issue: false hasContentIssue false

Schottky Barrier Heights of Refractory Metals on Silicon

Published online by Cambridge University Press:  28 February 2011

M. O. Aboelfotoh*
Affiliation:
IBM Thomas J. Watson Research Center Yorktown Heights, New York 10598
Get access

Abstract

Measurements of Schottky-barrier heights in the temperature range 175-295 K for refractory metal-silicon and corresponding silicide-silicon interfaces are presented. Refractory metal silicide formation is shown to have only a small effect on the barrier height. The n-type and p-type barrier heights for both the metal and the reacted silicide phase are shown to decrease with increasing temperature with the stun equal, within the experimental accuracy, to the indirect energy gap of silicon at any measured temperature. These results indicate that the temperature dependence of the barrier heights is mainly due to that of the indirect energy gap in the silicon.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Andrews, J. M. and Phillips, J. C., Phys. Rev. Lett. 35, 56 (1975).CrossRefGoogle Scholar
2. Brillson, L. J., Phys. Rev. Lett. 40, 260 (1978).Google Scholar
3. Schmid, P. E., Ho, P. S., Fil, H. and Tan, T. Y., Phys Rev. B 28, 4593 (1983).Google Scholar
4. Ho, P. S., Schmid, P. E. and Föll, H., Phys. Rev. Lett. 46, 782 (1981).Google Scholar
5. Rubloff, G. W., Phys. Rev. B15, 4307 (1982).CrossRefGoogle Scholar
6. Ho, P. S., J. Vac. Sci. Technol. Al, 745 (1983).Google Scholar
7. Rubloff, G. W., Surf. Sci 112, 268 (1983).Google Scholar
8. Cheung, N. N., Culbertson, R. J., Feldman, L. C., Silverman, P. J., K. W. West and Mayer, J. W., Phys. Rev. Lett. 45, 120 (1980).CrossRefGoogle Scholar
9. Taubenblatt, M. A. and Helms, C. R., J. Appl. Phys. 53, 6308 (1982).Google Scholar
10. Ottaviani, G., Tu, K. N. and Mayer, J. W., Phys. Rev. B 24, 3354 (1981).Google Scholar
11. Taubenblatt, M. A., Thomson, D. and Helms, C. R., Appl. Phy. Left. 44, 895 (1984).Google Scholar
12. Rhoderick, E. H., Metal-Semiconductor Contacts (Clarendon Press, Oxford, 1980).Google Scholar
13. Butz, R., Rubloff, G. W. and Ho, P. S., J. Vac. Sci Technol. Al, 771 (1983).Google Scholar
14. Beyers, R. and Sinclair, R., J. Appl. Phys. 57, 5240 (1985).Google Scholar
15. Aboelfotoh, M. O. and Tu, K. N., to be published.Google Scholar
16. Chopra, K. L., Thin Film Phenomena (McGraw-Hill, New York, 1969).Google Scholar
17. Aboelfotoh, M. O. and Tu, K. N., to be published in Phys. Rev. B.Google Scholar
18. Clabes, J. G., Rubloff, G. W., Reihl, B., Purtell, R. J., Ho, P. S., Zartner, A, Himpsel, F. J. and Eastman, D. E., J. Vac. Sc.i Technol. 20, 684 (1982).Google Scholar
19. Ohdomari, I., Kuan, T. S. and Tu, K. N., J. Appl. Phys. 50, 7020 (1979).Google Scholar
20. Tu, K. N., Thompson, R. D. and Tsaur, B. Y., Appl. Phys. Lett. 38, 626 (1981).CrossRefGoogle Scholar
21. Allen, R. E. and Dow, J. D., Phys. Rev. B25, 1423 (1982); 0. F. Sankey, R. E. Allen and J. D. Dow, Solid State Commun. 49, 1 (1984); and J. Vac. Sci. Technol. B2, 491 (1984).Google Scholar
22. Budau, W., Onton, A. and Heinke, W., J. Appl. Phys. 45, 1846 (1974).Google Scholar
23. Bardeen, J. and Shockley, W., Phys. Rev. 80, 72 (1950); H. Y. Fan, Phys. Rev. 82, 900 (1951).CrossRefGoogle Scholar
24. Crowell, C. R., Sze, S. M. and Spitzer, W. G., Appl. Phys. Left. 4, 91 (1964).Google Scholar
25. Mead, C. A. and Spitzer, W. G., Phys. Rev. Left. 10, 471 (1963).Google Scholar