Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-19T23:12:47.162Z Has data issue: false hasContentIssue false

A Scanning Tunneling Microscopy Study: Si/SiO2 Interface Roughness Induced by Chemical Etching

Published online by Cambridge University Press:  01 February 2011

Jixin Yu
Affiliation:
Department of Electrical Engineering, USC NanoCenter, University of South Carolina, Columbia, SC 29063 Beckman Institute, University of Illinois, Urbana, IL 61801
Lequn Liu
Affiliation:
Beckman Institute, University of Illinois, Urbana, IL 61801
Joseph W. Lyding
Affiliation:
Beckman Institute, University of Illinois, Urbana, IL 61801
Get access

Abstract

The Si/SiO2 interface roughness has received tremendous interest due to its relation to channel mobility degradation and dielectric reliability. We have used ultra-high vacuum scanning tunneling microscopy to directly examine the Si/SiO2 interface and study the roughening effect caused by chemical etching. The rms-roughness extracted quantitatively from the STM topography was found to be doubled from 0.111nm to 0.232nm by the normal NH4OH/H2O2 treatment, and further increased to 0.285nm for additional etching steps. It was also found that there were no regular single steps on the SiO2/Si(100) interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES:

[1] Taur, Y., Buchanan, D. A., Chen, W., Frank, D. J., Ismail, K. E., Lo, S., Sai-halasz, G. A., Viswanathan, R. G., Wan, H. C., Wind, S. J., and Wong, H., Proc. IEEE 85, 486 (1997).Google Scholar
[2] Green, M. L., Gusev, E. P., Degraeve, R., and Garfunkel, E. L., J. Appl. Phys. 90, 2057 (2001).Google Scholar
[3] Goodnick, S. M., Ferry, D. K., Wilmsen, C. W., Liliental, Z., Fathy, D., and Krivanek, O. L., Phys. Rev. B 32, 8171 (1985).Google Scholar
[4] Ohmi, T., Miyashita, M., Itano, M., Imaoka, T., and Kawanabe, I., IEEE Trans. Electron Devices 39, 537 (1992).Google Scholar
[5] Fischetti, M. V. and Laux, S. E., Phys. Rev. B 48, 2244 (1993).Google Scholar
[6] Mazzoni, G., Lacaita, A. L., Perron, L. M., and Pirovano, A., IEEE Trans. Electron Devices 46, 1423 (1999).Google Scholar
[7] Muller, D. A., Sorsch, T., Moccio, S., Baumann, F. H., Evans-Lutterodt, K., and Timp, G., Nature 399, 758 (1999).Google Scholar
[8] Timp, G., Bude, J., Bourdelle, K. K., Garno, J., Ghetti, A., Gossmann, H., Green, M., Forsyth, G., Kim, Y., Kleiman, R., Klemens, F., Kornblit, A., Lochstampfor, C., Mansfield, W., Moccio, S., Sorsch, T., Tennant, D. M., Timp, W., and Tung, R., IEDM Technical Digest, 1999, pp. 5558.Google Scholar
[9] Sapjeta, J., Boone, T., Rosamilia, J. M., Silverman, P. J., Sorsch, T. W., Timp, G., and Weir, B. E., Mat. Res. Soc. Symp. Proc. 477, 203 (1997).Google Scholar
[10] Gotoh, M., Sudoh, K., and Iwasaki, H., J. Vac. Sci. Technol. B 18, 2165 (2000).Google Scholar
[11] Mishima, H., Yasui, T., Mizuniwa, T., Abe, M., and Ohmi, T., IEEE Trans. Semicond. Manuf. 2, 69 (1989).Google Scholar
[12] Ohmi, T., Kotani, K., Teramoto, A., and Miyashita, M., IEEE Electron Device Lett. 12, 652 (2000).Google Scholar
[13] Sorsch, T., Timp, W., Baumann, F. H., Bogart, K. H. A., Boone, T., Donnelly, V. M., Green, M., Evans-Lutterodt, K., Kim, C. Y., Moccio, S., Rosamilia, J., Sapjeta, J., Weir, B., and Timp, G., VLSI Tech. Dig., 1998, pp. 222223.Google Scholar
[14] Seiwatz, R. and Green, M., J. Appl. Phys. 29, 1034 (1958).Google Scholar
[15] Yu, Jixin, Vasileska, D., Goodnick, S., Grazul, J., Green, M., Kim, C.Y., Evans-Lutterodt, K., Liu, Lequn, Lyding, J. W., Mansfield, W., Muller, D., Sorsch, T., Timp, R., and Timp, G., IEEE 2002 Silicon Nanoelectronics Workshop, Honolulu, HI, June 2002.Google Scholar
[16] Sumetskii, M. I. and Baranger, H. U., Appl. Phys. Lett. 66, 1352 (1995).Google Scholar
[17] Shibata, M., Nitta, Y., Fujita, K., and Ichikawa, M., Appl. Phys. Lett. 73, 2179 (1998).Google Scholar
[18] Li, N., Yoshinobu, T., and Iwasaki, H., Appl. Phys. Lett. 74, 1621 (1999).Google Scholar
[19] Gotoh, M., Sudoh, K., and Iwasaki, H., J. Vac. Sci. Technol. B 18, 2165 (2000).Google Scholar