Skip to main content Accessibility help
×
Home

A Scanning Tunneling Microscopy Study: Si/SiO2 Interface Roughness Induced by Chemical Etching

  • Jixin Yu (a1) (a2), Lequn Liu (a2) and Joseph W. Lyding (a2)

Abstract

The Si/SiO2 interface roughness has received tremendous interest due to its relation to channel mobility degradation and dielectric reliability. We have used ultra-high vacuum scanning tunneling microscopy to directly examine the Si/SiO2 interface and study the roughening effect caused by chemical etching. The rms-roughness extracted quantitatively from the STM topography was found to be doubled from 0.111nm to 0.232nm by the normal NH4OH/H2O2 treatment, and further increased to 0.285nm for additional etching steps. It was also found that there were no regular single steps on the SiO2/Si(100) interface.

Copyright

References

Hide All
[1] Taur, Y., Buchanan, D. A., Chen, W., Frank, D. J., Ismail, K. E., Lo, S., Sai-halasz, G. A., Viswanathan, R. G., Wan, H. C., Wind, S. J., and Wong, H., Proc. IEEE 85, 486 (1997).
[2] Green, M. L., Gusev, E. P., Degraeve, R., and Garfunkel, E. L., J. Appl. Phys. 90, 2057 (2001).
[3] Goodnick, S. M., Ferry, D. K., Wilmsen, C. W., Liliental, Z., Fathy, D., and Krivanek, O. L., Phys. Rev. B 32, 8171 (1985).
[4] Ohmi, T., Miyashita, M., Itano, M., Imaoka, T., and Kawanabe, I., IEEE Trans. Electron Devices 39, 537 (1992).
[5] Fischetti, M. V. and Laux, S. E., Phys. Rev. B 48, 2244 (1993).
[6] Mazzoni, G., Lacaita, A. L., Perron, L. M., and Pirovano, A., IEEE Trans. Electron Devices 46, 1423 (1999).
[7] Muller, D. A., Sorsch, T., Moccio, S., Baumann, F. H., Evans-Lutterodt, K., and Timp, G., Nature 399, 758 (1999).
[8] Timp, G., Bude, J., Bourdelle, K. K., Garno, J., Ghetti, A., Gossmann, H., Green, M., Forsyth, G., Kim, Y., Kleiman, R., Klemens, F., Kornblit, A., Lochstampfor, C., Mansfield, W., Moccio, S., Sorsch, T., Tennant, D. M., Timp, W., and Tung, R., IEDM Technical Digest, 1999, pp. 5558.
[9] Sapjeta, J., Boone, T., Rosamilia, J. M., Silverman, P. J., Sorsch, T. W., Timp, G., and Weir, B. E., Mat. Res. Soc. Symp. Proc. 477, 203 (1997).
[10] Gotoh, M., Sudoh, K., and Iwasaki, H., J. Vac. Sci. Technol. B 18, 2165 (2000).
[11] Mishima, H., Yasui, T., Mizuniwa, T., Abe, M., and Ohmi, T., IEEE Trans. Semicond. Manuf. 2, 69 (1989).
[12] Ohmi, T., Kotani, K., Teramoto, A., and Miyashita, M., IEEE Electron Device Lett. 12, 652 (2000).
[13] Sorsch, T., Timp, W., Baumann, F. H., Bogart, K. H. A., Boone, T., Donnelly, V. M., Green, M., Evans-Lutterodt, K., Kim, C. Y., Moccio, S., Rosamilia, J., Sapjeta, J., Weir, B., and Timp, G., VLSI Tech. Dig., 1998, pp. 222223.
[14] Seiwatz, R. and Green, M., J. Appl. Phys. 29, 1034 (1958).
[15] Yu, Jixin, Vasileska, D., Goodnick, S., Grazul, J., Green, M., Kim, C.Y., Evans-Lutterodt, K., Liu, Lequn, Lyding, J. W., Mansfield, W., Muller, D., Sorsch, T., Timp, R., and Timp, G., IEEE 2002 Silicon Nanoelectronics Workshop, Honolulu, HI, June 2002.
[16] Sumetskii, M. I. and Baranger, H. U., Appl. Phys. Lett. 66, 1352 (1995).
[17] Shibata, M., Nitta, Y., Fujita, K., and Ichikawa, M., Appl. Phys. Lett. 73, 2179 (1998).
[18] Li, N., Yoshinobu, T., and Iwasaki, H., Appl. Phys. Lett. 74, 1621 (1999).
[19] Gotoh, M., Sudoh, K., and Iwasaki, H., J. Vac. Sci. Technol. B 18, 2165 (2000).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed