Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-19T08:46:15.038Z Has data issue: false hasContentIssue false

Scanning Tunneling Microscopy Studies of GaAs Heteroepitaxial Growth on Si

Published online by Cambridge University Press:  28 February 2011

D. K. Biegelsen
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
R. D. Bringans
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
J. E. Northrup
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
L. E. Swartz
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
Get access

Abstract

We discuss the benefits and limitations of scanning tunneling microscopy (STM) for use in studies of the early stages of heteroepitaxy. We describe a system merging in vacuo an MBE, STM, XPS, LEED, etc. We present results for the initial stages of GaAs growth on vicinal Si(100), including As termination, Ga capping and subsequent 2D and 3D competition.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hamers, R. J., Köhler, U. K., and Demuth, J. E., J. Vac. Sci. Technol. A 8 195 (1990).Google Scholar
2. Mo, Y.-W., Kariotis, R., Swartzentruber, B. S., Webb, M. B., and Lagally, M. G., J. Vac. Sci. Technol. A 8, 201 (1990).Google Scholar
3. Pashley, M.D., Haberern, K.W., Friday, W., Woodall, J.M., and Kirchner, P.D., Phys. Rev. Lett., 60, 2176 (1988).Google Scholar
4. Biegelsen, D. K., Bringans, R. D., Northrup, J. E., and Swartz, L.-E., Phys. Rev. B 41, 5701 (1990).Google Scholar
5. Haberern, K.W. and Pashley, M.D., Phys. Rev. B 41, 3226 (1990).Google Scholar
6. Biegelsen, D. K., Bringans, R. D., Northrup, J. E., and Swartz, L.-E. (submitted for publication).Google Scholar
7. Cho, A. Y., J. Appl. Phys. 42, 2074 (1971).Google Scholar
8.Model UHVC-100 (Burleigh Instruments, Burleigh Park, Fishers, NY 14453).Google Scholar
9. Biegelsen, D. K., Ponce, F. A., Krusor, B. S., Tramontana, J. C., Yingling, R. D., Bringans, R. D., and Fenner, D. B., Mat. Res. Soc. Proc. 116, 33 (1989).Google Scholar
10. Uhrberg, R. I. G., Bringans, R. D., Bachrach, R. Z., and Northrup, J. E., Phys. Rev. Lett. 56, 520 (1986).Google Scholar
11. Bringans, R. D., Olmstead, M. A., Uhrberg, R. I. G., and Bachrach, R. Z., Phys. Rev. B 36, 9569 (1987).Google Scholar
12. Harrison, W. A., J. Vac. Sci. Technol. 16, 1492 (1979).Google Scholar
13. Bringans, R. D., Biegelsen, D. K., and Swartz, L.-E. (to be published).Google Scholar
14. Northrup, J. E., Mat. Res. Soc. Symp. Proc. 159, 3 (1990).Google Scholar
15. Kaxiras, E. and Joannopoulos, J. D., Surf. Sci. 224, 515 (1989).Google Scholar
16. Northrup, J. E., Phys. Rev. Lett. 62, 2487 (1989).Google Scholar