Skip to main content Accessibility help

Scanning Tunneling Microscopy on Charge Density Waves in Layered Compounds

  • J. Th. M. De Hosson (a1) and G. P. E. M. Van Bakel (a1)


Different layered transition metal dichalcogenides were subjected to scanning tunneling microscopy to reveal the electronic charge distribution associated with the charge density wave (CDW) part of the superstructure, in addition to the atomic corrugation. The observations presented display three regimes ranging from localized CDW centred around defects/impurities in the case of lT-TiS2, via an intermediate regime governed by overlapping envelope functions in 2H-NbSe2, to a fully developed CDW system in 1T-TaSe2 (as well in a large number of other compounds). The fact that these observations have been made in solids ranging from (dirty) semiconductor (1T-TiS2) to semimetal (1T-TaSe2) to metallic (2H-NbSe2) points at the general applicability of the phenomenological Ginzburg-Landau theory, employed to describe the various regimes in which the formation of charge density waves and the accompanying periodic lattice distortions appear to act.



Hide All
[1] Friend, R. H., Yoffe, A. D., Adv. Phys. 36, 1(1987).
[2] Wilson, J. A., Phys. Status Solidi B 86, 11 (1978).
[3] Burk, B., Thomson, R. E., Zettl, A., Clarke, J., Phys. Rev. Lett. 66, 3040 (1991).
[4] Slough, C. G., McNairy, W. W., Wang, C., Coleman, R. V., J. Vac. Sci. Technol. B 9,1036 (1991).
[5] Wu, X. L., Lieber, C. M., Phys. Rev. Lett. 64, 1150 (1990).
[6] Wu, X. L., Lieber, C. M., J. Vac. Sci. Technol. B 9, 1044 (1991).
[7] McMillan, W. L., Phys. Rev. B 14, 1496 (1976).
[8] McMillan, W. L., Phys. Rev. B 12, 1187 (1975).
[9] Coleman, R. V., Giambattista, B., Hansma, P. K., Johnson, A., McNairy, W. W., Slough, C. G., Adv. Phys. 37,559 (1988).
[10] Slough, C. G., Giambattista, B., Johnson, A., McNairy, W. M., Wang, C., Coleman, R. V., Phys. Rev. B 37, 6571 (1988).
[11] Thomson, R. E., Walter, U., Ganz, E., Clarke, J., Zettl, A., Rauch, P., DiSalvo, F. J., Phys. Rev. B 38, 10734 (1988).
[12] Parkinson, B.A., Ren, J. and Whangbo, M.-H., Am. Chem. Soc. 113, 7833 (1991)
[13] Barrett, R. C., Nogami, J., Quate, C. F., Appl. Phys. Lett. 57, 10, 992 (1990).
[14] Dai, H., Chen, H., Lieber, C. M., Phys. Rev. Lett. 66,24,3183 (1991).
[15] Chen, H., Wu, X. L., Lieber, C. M., J. Am. Chem. Soc. 112, 3326 (1990).
[16] Wu, X. L., Lieber, C. M., Phys. Rev. B 41, 2, (1990).
[17] Wu, X. L., Lieber, C. M., Phys. Rev. Lett. 61, 22 (1988).
[18] Ginzburg, V. L., Landau, L. D., Nuovo Cimento 2, 1234 (1955).
[19] Dahn, D. C., Watanabe, M. O., Blackford, B. L., Jericho, M. H., J. Appl. Phys. 63, 2, 315 (1987).
[20] Van Bakel, G.P.E.M., De Hosson, J. Th. M., Phys. Rev. B 46,2001 (1992


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed