Hostname: page-component-84b7d79bbc-g5fl4 Total loading time: 0 Render date: 2024-07-26T20:08:12.871Z Has data issue: false hasContentIssue false

Scanning Electron Microscopy Cathodoluminescence Studies of Piezoelectric Fields in an InGaN Multiple Quantum Well Light Emitting Diode

Published online by Cambridge University Press:  01 February 2011

Kristin L. Bunker
Affiliation:
Analytical Instrumentation Facility and Materials Science and Engineering Department, North Carolina State University, Box 7531, Raleigh, NC 27695, USA
Roberto Garcia
Affiliation:
Analytical Instrumentation Facility and Materials Science and Engineering Department, North Carolina State University, Box 7531, Raleigh, NC 27695, USA
Phillip E. Russell
Affiliation:
Analytical Instrumentation Facility and Materials Science and Engineering Department, North Carolina State University, Box 7531, Raleigh, NC 27695, USA
Get access

Abstract

Scanning Electron Microscopy (SEM)-based Cathodoluminescence (CL) experiments were used to study the influence of piezoelectric fields on the optical and electrical properties of a commercial InGaN-based Multiple Quantum Well (MQW) Light Emitting Diode (LED). The existence and direction of a piezoelectric field in the InGaN-based LED was determined with voltage dependent SEM-CL experiments. The CL emission peak showed a blueshift followed by a redshift with increasing reverse bias due to the full compensation of the piezoelectric field. It was determined that the piezoelectric field points in the [000–1] direction and the magnitude was estimated to be approximately 1.0±0.2 MV/cm. SEM-CL carrier generation density variation and electroluminescence experiments were used to confirm the existence of a piezoelectric field in the InGaN-based MQW LED.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Morkoç, H., Nitride Semi-conductors and Devices (Springer, Berlin Heidelberg 1999).Google Scholar
2. Takeuchi, T., Wetzel, C., Amano, H., and Akasaki, I.: III-V Nitride Semiconductors: Applications and Devices: Piezoelectric Effect in Group-III Nitride-Based Heterostructures and Quantum Wells (Taylor & Francis, New York 2003).Google Scholar
3. Bernardini, F. and Fiorentini, V., Phys. Stat. Sol. B 216, 391 (1999).Google Scholar
4. Bernardini, F. and Fiorentini, V., Phys. Rev. B 56, R10024 (1997).Google Scholar
5. Chichibu, S.F., Azuhata, T., Sota, T., Mukai, T., and Nakamura, S., J. Appl. Phys. 88, 5153 (2000).Google Scholar
6. Takeuchi, T., Wetzel, C., Yamaguchi, S., Sakai, H., Amano, H., Akasaki, I., Kaneko, Y., Nakagawa, S., Yamaoka, Y., and Yamada, N., Appl. Phys. Lett. 73, 1691 (1998).Google Scholar
7. Jho, Y.D., Yahng, J.S., Oh, E., and Kim, D.S., Appl. Phys. Lett. 79, 1130 (2001).Google Scholar
8. Takeuchi, T., Sota, S., Katsuragawa, M., Komori, M., Takeuchi, H., Amano, H., and Akasaki, I., Jpn. J. Appl. Phys. 36, L382 (1997).Google Scholar
9. Shapiro, N.A., Perlin, P., Kisielowski, C., Mattos, L.S., Yang, J.W., and Weber, E.R., MRS Internet J. Nitride Research, Res. 5, 1 (2000).Google Scholar
10. Kanaya, K. and Okayama, S., J. Phys. D.: Appl. Phys. 5, 43 (1972).Google Scholar
11. Arlt, G. and Quadflieg, P., Phys. Stat. Sol., 25, 323 (1968).Google Scholar
12. Miller, D.A.B., Chemla, D.S., Damen, T.C., Gossard, A.C., Wiegmann, W., Wood, T.H., and Burrus, C. A., Phys. Rev. Lett., 53, 2173 (1984).Google Scholar
13. Wetzel, C., Takeuchi, T., Amano, H., and Akasaki, I., Phys. Rev. B 61, 2159 (2000).Google Scholar
14. Lefebvre, P., Morel, A., Gallart, M., Taliercio, T., Allgre, J., Gil, B., Mathieu, H., Damilano, B., Grandjean, N., and Yamada, N., Appl. Phys. Lett. 78, 1252 (2001).Google Scholar
15. Kasap, S.O., Principles of Electronic Materials and Devices, 2nd Ed. (McGraw-Hill, New York 2002).Google Scholar
16. Bykhovski, A.D., Kaminski, V.V., Shur, M.S., Chen, Q.C., and Khan, M.A., Appl. Phys. Lett. 68, 818 (1996).Google Scholar
17. Newbury, D.E., Joy, D.C., Echlin, P., Fiori, C. E., and Goldstein, J.I.: Advanced Scanning Electron Microscopy and X-Ray Microanalysis (Plenum Press, New York 1992), 2nd edition.Google Scholar
18. Bandic, Z.Z., Bridger, P.M., Piquette, E.C., and McGill, T.C., Appl. Phys. Lett. 72, 3166 (1998).Google Scholar
19. Henley, S.J., Bewick, A., Cherns, D., and Ponce, F.A., J. Crystal Growth 230, 481 (2001).Google Scholar
20. Henley, S.J. and Cherns, D., J. Appl. Phys. 93, 3934 (2003).Google Scholar