Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-19T22:34:36.067Z Has data issue: false hasContentIssue false

Scanning Electron Microscopy and Surface Enhanced Raman Spectroscopy Correlation Studies of Functionalized Composite Organic-Inorganic SERS Nanoparticles on Cancer Cells

Published online by Cambridge University Press:  25 March 2011

Ai Leen Koh
Affiliation:
Materials Science and Engineering Department, Stanford University, Stanford CA 94305, USA
Robert Sinclair
Affiliation:
Materials Science and Engineering Department, Stanford University, Stanford CA 94305, USA
Get access

Abstract

Composite Organic-Inorganic Nanoparticles (COINs) are a novel type of surface-enhanced Raman (SER) scattering nanoparticle formed by aggregating inorganic silver particles in the presence of a chosen organic molecule with a distinct Raman fingerprint. Binding between antibody-functionalized COINs and cells is detected primarily using Raman spectroscopy, which measures spectral shifts of the excitation light due to inelastic scattering. It has been suggested that the amount of antibody-conjugated COINs binding on cells will vary according to the antigen-expression levels in cells and will lead to changes in measured SERS intensities. COINs functionalized with antibodies CD54 and CD8 were conjugated to U937 and SupT1 cancer cells and investigated in this study. SERS intensity measurements were obtained from each of the four sample variants and normalized against control samples comprising non-antibody-functionalized COINs with cells. The amount of COINs binding on cells was determined using scanning electron microscopy (SEM) and correlated with the SER spectroscopy intensity. Although we found a positive correlation between the number of COINs binding to cells and their respective SERS intensity, this relationship is not one-to-one, nor does it appear to be linear. We demonstrated that SEM imaging and SER spectroscopy can complement each other to provide information about COINs binding onto cancer cells.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lewin, M., Carlesso, N., Tung, C-H., Tang, X-W., Cory, D., Scadden, D. T., Weissleder, R., Nat. Biotechnol. 18, 410 (2000).Google Scholar
2. Brigger, I., Dubernet, C. and Couvreur, P. Adv. Drug Delivery Rev. 54, 631 (2002).Google Scholar
3. Liu, Z., Sun, X., Nakayama, N. and Dai, H., ACS Nano 1, 50 (2007).Google Scholar
4. Loo, C., Lowery, A., Halas, N., West, J. and Drezek, R., Nano Lett. 5, 709 (2005).Google Scholar
5. Brannon-Peppas, L., Blanchette, J. O., Adv. Drug Delivery Rev. 56, 1649 (2004).Google Scholar
6. Bianco, A., Kostarelos, K., Partidos, C.D. and Prato, M., Chem Commun 571 (2005).Google Scholar
7. Kam, N.W.S., O’Connell, M., Wisdom, J.A. and Dai, H., Proc Natl Acad Sci USA 102, 11600 (2005).Google Scholar
8. Koh, A.L., Shachaf, C.M., Elchuri, S., Nolan, G.P. and Sinclair, R., Ultramicroscopy 109, 111 (2008).Google Scholar
9. Su, X., Zhang, J., Sun, L., Koo, T-W., Chan, S., Sundararajan, N., Yamakawa, M. and Berlin, A. A., Nano Lett. 5, 49 (2004).Google Scholar
10. Sun, L., Sung, K-B., Dentinger, C., Lutz, B., Nguyen, L., Zhang, J., Qin, H., Yamakawa, M., Cao, M., Lu, Y., Chmura, A.J., Zhu, J., Su, X., Berlin, A. A., Chan, S. and Knudsen, B., Nano Lett. 7, 351 (2007).Google Scholar
11. Shachaf, C. M., Elchuri, S. V., Koh, A. L., Zhu, J., Nguyen, L. N., Mitchell, D. J., Zhang, J., Swartz, K. B., Sun, L., Chan, S., Sinclair, R. and Nolan, G. P., PLoS One 4(4) (2009) doi:10.1371/journal.pone.0005206Google Scholar
12. Lutz, B., Dentiner, C., Sun, L., Nguyen, L., Zhang, J., Chmura, A.J., Allen, A., Chan, S. and Knudsen, B., J. Histochem. Cytochem. 56, 371 (2008).Google Scholar
13. Koh, A.L., Shachaf, C.M., Elchuri, S., Nolan, G.P. and Sinclair, R., Microsc. Microanal. 14 (Suppl. 2), 670CD (2008).Google Scholar
14. Long, D.A., The Raman Effect: A Unified Treatment of the Theory of Raman Scattering of Molecules, John Wiley and Sons Ltd, Chichester, UK, 2002.Google Scholar
15. Pelletier, M.J., Analytical Applications of Raman Spectroscopy, Blackwell Science Ltd, MA, USA, 1999.Google Scholar
16. Laserna, J.J., Modern Techniques in Raman Spectroscopy, John Wiley and Sons Ltd, Chichester, UK, 1996.Google Scholar
17. Fleischmann, M., Hendra, P.J. and McQuillan, A.J., Chem. Phys. Lett. 26, 163 (1974).Google Scholar
18. Nie, S. and Emory, S.R., Science 275, 1102 (1997).Google Scholar
19. Ni, J., Lipert, R.J., Dawson, G.B. and Porter, M.D., Anal. Chem. 71, 4903 (1999).Google Scholar
20. Grubisha, D.S., Lipert, R.J., Park, H-Y., Driskell, J. and Porter, M.D., Anal. Chem. 75, 5936 (2004).Google Scholar
21. Freeman, R.G., Doering, W.E., Walton, I.D., Penn, S.G., Davis, G., Wong, F. and Natan, M.J., Proc. SPIE 5705, 114 (2005).Google Scholar
22. Kim, J-H., Kim, J-S., Choi, H., Lee, S-M., Jun, B-H., Yu, K-N., Kuk, E., Kim, Y-K., Jeong, D.H., Cho, M-H. and Lee, Y-S., Anal. Chem. 78, 6967 (2006).Google Scholar
23. Kneipp, J., Kneipp, H.. Rajadurai, A., Redmond, R.W. and Kneipp, K., J. Raman Spectrosc. 40, 1 (2009).Google Scholar
24. Wang, Y., Li, D., Li, P., Wang, W., Ren, W., Dong, S., Wang, E., J. Phys. Chem. C 111, 16833 (2007).Google Scholar
25. Kneipp, J., Kneipp, H., Wittig, B., Kneipp, K., Nano Lett. 7, 2819 (2007).Google Scholar
26. Cao, Y. W. C., Jin, R. C., Mirkin, C. A., Science 297, 1536 (2002).Google Scholar
27. Cao, Y. C., Jin, R. C., Nam, J. M., Thaxton, C. S., Mirkin, C. A., Am, J.. Chem. Soc. 125, 14676 (2003).Google Scholar
28. Qian, X., Peng, X-H., Ansari, D. O., Yin-Goen, Q., Chen, G. Z., M Shin, D., Yang, L., Young, A. N., Wang, M. D and Nie, S., Nat. Biotechnol. 26, 83 (2008).Google Scholar
29. Tian, Z-Q., Yang, Z-L., Ren, B., Li, J-F., Zhang, Y., Lin, X-F., Hu, J-W. and Wu, D-Y., Faraday Discuss. 132, 159 (2006).Google Scholar
30. Elechiguerra, J.L., Reyes-Gasga, J. and Yacaman, M.J., J. Mater. Chem. 16, 3906 (2006) .Google Scholar
31. Sabur, A., Havel, M. and Gogotsi, Y., J. Raman Spectrosc. 39, 61 (2008).Google Scholar
32. Sztainbuch, I.W., J. Chem. Phys. 125, 124707 (2006).Google Scholar