Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-23T07:14:32.093Z Has data issue: false hasContentIssue false

S.A.N.S. Study Of Fractal Alumino-Silicate Aerogels

Published online by Cambridge University Press:  28 February 2011

F. Chaput
Affiliation:
Laboratoire de Physique de la Matière Condensée, URA CNRS 1254, Ecole Polytechnique, 91128 Palaiseau Cédex(FRANCE)
J.P. Boilot
Affiliation:
Laboratoire de Physique de la Matière Condensée, URA CNRS 1254, Ecole Polytechnique, 91128 Palaiseau Cédex(FRANCE)
A. Dauger
Affiliation:
Ecole Nationale Supérieure de Céramique Industrielle, 87065Limoges Cédex(FRANCE)
F. Devreux
Affiliation:
Laboratoire de Physique de la Matière Condensée, URA CNRS 1254, Ecole Polytechnique, 91128 Palaiseau Cédex(FRANCE)
A. De Geyer
Affiliation:
Institut Laüe-Langevin, 156X. 38042 Grenoble Cédex(FRANCE)
Get access

Abstract

Small angle scattering clearly shows that aluminosilicate aerogels, prepared from Si-Al double precursor, form mutually self-similar volume fractals at least in the range of densities 40-160kg/m3. The structure, insensitive to the pH of the added water, consists of primary homogeneous rough units attached into volume fractal clusters (D=2.1) .Heating at 800°C oxidizes residual organic groups and decreases the roughness of the unit particles. Densification above 900°C both implies increasing of the size of units and decreasing of the fractal domain.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

l. Schaeffer, D.W. and Keefer, K.D. in Fractal in Physics, edited by Pietronero, L. and Tosatti, E., (Elsevier Science Publishers B.V. 1986) p.39.Google Scholar
2. Schaefer, D.W., Revue de Physique Appliquée (Paris), 24, C4121 (1989).Google Scholar
3. Schaeffer, D.W. and Keefer, K.D. in Better Ceramics Through ChemistryI, edited by Brinker, C.J., Clark, D.E. and Ulrich, D.R., (Mater.Res.Soc.Proc.32, 1984) p.l.Google Scholar
4. Schaefer, D.W., Brinker, C.J., Wilkoxon, J.P., Wu, D.Q., Phillips, J.C. and Chu, B. in Better Ceramics Throuch Chemistry III, edited by Brinker, C.J., Clark, D.E. and Ulrich, D.R., (Mater.Res.Soc.Proc.121, 1986) p.709.Google Scholar
5. Vacher, R., Woignier, T., Pelous, J. and Courtens, E., Phys.Rev.B, 7, 6500 (1988).Google Scholar
6. Chaput, F., Lecomte, A., Dauger, A. and Boilot, J.P., Chemistry of Materials, 1, 199 (1989).Google Scholar
7. Pouxviel, J.C. and Boilot, J.P., J.of Materials Science 24, 321 (1989).Google Scholar
8. Pouxviel, J.C., Boilot, J.P., Lecomte, A. and Dauger, A., J.Physique (Paris) 48, 921 (1987).Google Scholar
9. Chaput, F., Boilot, J.P., Dauger, A., Devreux, F. and de Geyer, A., J. Non-Cryst. Solids, 116, 133 (1990).Google Scholar