Skip to main content Accessibility help

Ruthenium Thermodynamics in Nuclear Waste Glasses

  • S. Gossé (a1), S. Schuller (a2), C. Guéneau (a1) and H. Boucetta (a2)


In high level radioactive glasses, the low solubility platinoids (Pd, Ru, Rh) precipitate to form (Pd-Rh-Te, Ru-Rh, Ru) metallic particles and (RuO2, Rh2O3) oxides during the vitrification process. The composition and microstructures of these phases can significantly modify the physico-chemical properties and the electrical or thermal conductivities during melting.

Several studies are undertaken at CEA in order to point out the reactions and the chemical interactions in the liquid and viscous states between the glass matrix and the platinoids present in the calcinated waste. Among these studies, a thermodynamic fission products database is being developed on the metallic (Pd-Rh-Ru-Te) and oxide (O-Pd-Rh-Ru-Te) systems. In this work, based on the Calphad method, the Gibbs free energies of each phase are modelled to provide an overall thermodynamic description of the platinoid phases in nuclear waste glasses. The objective of the database is to facilitate calculations of phase diagrams and thermodynamic properties. This flexible tool also enables calculations of the relative stability between metallic and oxide phases in function of the oxygen potential (RedOx equilibrium).

For example, some solidification routes are calculated for typical Pd-Rh-Ru-Te compositions of LWR spent fuels. The calculated Pd-Rh-Ru-Te solidification paths are compared with the phases analysed in simplified laboratory scale glass samples. Using these results, the compositions of the Pd-Rh-Ru-Te inclusions are predicted. Furthermore, possible consideration of the RedOx equilibria for some ruthenium based phases makes it possible to explain the speciation between oxide and metallic phases partly due to the Pd-Te interaction.



Hide All
1. Mitamura, H., Murakami, T., Banba, T., Kiriyama, Y., Kamizono, H., Kumata, M., Tashiro, S., Nuclear and Chemical Waste Management 4 (1983)
2. Belyaev, A. V., Journal of Structural Chemistry 44, 1 (2003)
3. Krause, Ch., Luckscheiter, B., Journal of Materials Research 6, 12 (1991)
4. Galoisy, L., Calas, G., Morin, G., Pugnet, S., Fillet, C., J. Mater Research 13, 5 (1998)
5. Pflieger, R., Lefebvre, L., Malki, M., Allix, M., Grandjean, A., J. Nuclear Mater. 389, 3 (2009)
6. Pinet, O., Mure, S., Journal of Non-Crystalline Solids 355, pp. 221227 2009
7. Jansson, B., Ph D thesis, Royal Inst. Techn., Stockholm, Sweden: KTM (1984)
8. Sundman, B., Jansson, B., Andersson, J-O., Calphad 9 (1985)
9. Gossé, S., Guéneau, C., Intermetallics 19, 5 (2011)
10. Gossé, S., Schuller, S., Guéneau, C., MRS Symposium Proceedings 1265 (2010)
11. Gürler, R., Journal of Nuclear Materials 199 (1992)
12. Raevskaya, M. V., Vasekin, V. V., Sokolova, I. G., J. of the Less Com. Met. 99 (1984)
13. Paschoal, J. O. A., Kleykamp, H., Thümmler, F., Zeitschrift Für Metallkunde 74, 10 (1983)
14. Hartmann, T., Ph D thesis, Forschungszentrum Karlsruhe GmbH., Germany (1996)
15. Dinsdale, A. T., Calphad 15, 4 (1991)
16. Kaye, M.H., Lewis, B.J., Thompson, W.T., J. Nuclear Mater. 366 (2007)
17. Lukas, H., Fries, S. G., Sundman, B., Computational Thermodynamics: The Calphad Method, 1 st edition, Cambridge University Press New York, NY (2007)
18. Kleykamp, H., Paschoal, J.O., Pejsa, R., Thümmler, F., J. Nuclear Mater. 130 (1985)
19. Kleykamp, H., J. Nuclear Mater. 171 (1990)
20. Bernath, S., Kleykamp, H., Smykatz-Kloss, W., J. Nucl. Mater. 209 (1994)
21. Okamoto, H, Journal of Phase Equilibria 12 (1991)


Ruthenium Thermodynamics in Nuclear Waste Glasses

  • S. Gossé (a1), S. Schuller (a2), C. Guéneau (a1) and H. Boucetta (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed