Skip to main content Accessibility help
×
Home

RTP Calibration Wafer using thin-film Thermocouples

  • K. G. Kreider (a1), D. P. Dewitt (a2), B. K. Tsai (a2), F. J. Lovas (a2) and D. W. Allen (a3)...

Abstract

Rapid thermal processing (RTP) is a key technology for the cluster tool, single wafer manufacturing approach that is used to produce integrated circuits at lower cost with reduced line widths and thermal budgets. However, various problems associated with wafer temperature measurements and dynamic temperature uniformity have hindered the widespread use of RTP in semiconductor device manufacturing. The current technology for calibrating the radiometers employs a thermocouple instrumented wafer. We have accomplished improvements in the accuracy of these measurements through the use of thin-film thermocouples and the new Pt/Pd thermocouple system. These new calibration wafers can reduce the uncertainty in wafer temperature measurement technology by (1) reducing the perturbation due to heat transfer at the thermocouple junctions and (2) replacing conventional thermocouples with the superior Pt/Pd system. The thin-film thermocouples were calibrated using proof specimens fabricated with the Si 200 mm wafers and evaluated in the NIST RTP sensor test bed.

The commercial type K thermocouples yielded temperature measurements within 4 °C of the thin-film Rh/Pt and Pt/Pd thermocouples on the 200 mm calibration wafer between 725°C and 875 °C. The Pt/Pd thin-film thermocouples proved less durable than the Rh/Pt thin films and the limitations of these systems are discussed. We also present a comparison of the radiometric measurements with the thermocouple measurements using a model estimating the wafer temperature from its spectral radiance temperature.

Copyright

References

Hide All
1. Moslehi, M.M., Najm, H., Velo, L., Yeakley, R., Kuehn, J., Dostalik, B., and Yin, D., Mat. Res. Symp. Proceedings, Vol.224, Mat. Res. Soc., Pittsburgh, PA, 1991, 143157.
2. Moslehi, M.M., Paranjpe, A., Velo, L.A., and Kuehn, J., Solid State Tech., May 1994, 3745.
3. Barna, G.G., Moslehi, M.M., and Yong, J.L., Solid State Technology, Apr. 1994, 5761.
4. Wortman, J.J., Houser, M.C., Ozturk, J.R., and Sorrell, F.Y., Proceedings of Third International Symposium on ULSI, 1991, 528540.
5. Colgan, E.G., Cabral, C., Clevenger, L.A., and Harper, J.M., Mat. Res. Soc. Proc.V 387, 1995, 4955.
6. Brueck, S.R.J., Zaida, S.H., and Lang, M.K., Mat. Res. Soc. Proc., V 303, 1993, 117125.
7. Brueck, S.R.J., Zaida, S.H., and Lang, M.K., Mat. Res. Soc. Proc., V 387, 1995, 125131.
8. Peuse, B., Yam, M., Bahl, S., and Elia, C., Proceedings of 5th Int. Conf. On Advanced Thermal Processing of Semiconductors, RTP '97, Round Rock, TX, 358365.
9. Shietinger, C., Adams, B., and Yarling, C., Mat. Res. Soc. Proc., V 224, 1991, 2328.
10. Fiory, A.T., Shietinger, C.S., Adams, B.A., and Yarling, C., Mat. Res. Soc. Proc., V 303, 1993, 139145.
11. Xing, G.C., Wang, Z.H., Shietinger, C.S., Wasserman, Y., and Sun, M.H., Mat. Res. Soc. Proc., V 338, 1995, 119125.
12. DeWitt, D.P., Sorrell, F.Y., and Elliot, J.K., Mat. Res. Soc. Proc., V 470, 1997, 315.
13. Timans, P.J., J. Appl. Phys., 74, 1993, 63536360.
14. Rogner, H., Timans, P.J., and Amed, H., Appl. Phys. Lett., 69, 1996, 2190–2.
15. Bums, G.W., and Ripple, D.C., Proceedings of 6th Int'l. Symp. On Temperature and Thermal Measurements in Industry, TEMPMEKO '96, Turin, Italy, 1996.
16. Battuello, M., Ali, K., and Girard, F., Proceedings of 6th Int'l Symp. On Temperature and Thermal Measurements in Industry, TEMPMEKO '96, Turin, Italy, 1996.
17. Kreider, K.G. and DiMeo, F., Proc. Of Fifth International Conf. On Advanced Thermal Processing of Semiconductors, RTP '97, Round Rock, TX, 1997, 105113.
18. Kreider, K.G., Ripple, D.C., and DeWitt, D.P., Proceedings of 44th International Instrumentation Symposium, Reno, NV, ISA, Research Triangle Park, NC, May, 1998, 561570
19. Ripple, D.C., Bums, G.W., and Battuello, M., Proceedings of NCSL 1997 Workshop and Symposium, Atlanta, GA, 1997, 481488.
20. Identification of commercial equipment and materials in this paper does not imply recommendation of endorsement by the National Institute of Standards and Technology, nor does it imply that the equipment and materials are necessarily the best available for the purpose.
21. Tsai, B.K., Lovas, F.J., DeWitt, D.P., Kreider, K.G., Bums, G.W., and Allen, D.W., Proc.of Fifth International Conf. On Advanced Thermal Processing of Semiconductors, RTP'97, Round Rock, TX, 1997, 340346.
22. Lovas, F.J., Tsai, B.K., and Gibson, C.E., Private communications.
23. Barin, I.,, Thermochemical Data of Pure Substances, VCH Verlagsgesellscraft mbH, Weinheim, FRG, 1989, 1168.
24. Roeser, W.F., and Wensel, H.T. in Temperature; Its Measurement and Control in Science and Industry, _Reinhold Pub, New York, NY, 1941, 1293.
25. Vandenabeele, P. and Renken, W., Mat. Res. Soc. Symp. Proc., V 470, 1997, 1728.
26. DeWitt, D.P., and Nutter, G.D., (Eds.), Theory and Practice of Radiation Thermometry, John Wiley & Sons, 1987, pp 41.

RTP Calibration Wafer using thin-film Thermocouples

  • K. G. Kreider (a1), D. P. Dewitt (a2), B. K. Tsai (a2), F. J. Lovas (a2) and D. W. Allen (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed