Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-22T16:04:52.208Z Has data issue: false hasContentIssue false

Routes to Deagglomerated Nanopowder by Chemical Synthesis

Published online by Cambridge University Press:  21 February 2011

Detlef Burgard
Affiliation:
Institut für Neue Materialien, Im Stadtwald, Geb. 43, D-66 123 Saarbrücken, Germany
Christian Kropf
Affiliation:
Institut für Neue Materialien, Im Stadtwald, Geb. 43, D-66 123 Saarbrücken, Germany
Rüdiger Nass
Affiliation:
Institut für Neue Materialien, Im Stadtwald, Geb. 43, D-66 123 Saarbrücken, Germany
Helmut Schmidt
Affiliation:
Institut für Neue Materialien, Im Stadtwald, Geb. 43, D-66 123 Saarbrücken, Germany
Get access

Abstract

The concept of tailored interfaces has been applied to the synthesis of nano-scaled Y2O3/ZrO2 powders. The microemulsion technique as well as the thermodynamically controlled growth reaction have been utilized for this purpose. Both methods yielded agglomerate free amorphous powders with particles sizes of 8 nm and 15 nm, respectively. Cubic zirconia was obtained by calcination between 300 and 400 °C and crystallite coarsening was not observed. The calcined powders could be redispersed by treating them with tertiary amines in aqueous solutions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Gleiter, H., Phase Transition 24-26, 15-26 (1990)Google Scholar
2 Gleiter, H., Prog. Mat. Sci. 33, 223-315 (1990)Google Scholar
3 Kriechbaum, G. W. and Kleinschmit, P., Advanced Materials, 10, 330-337, 1989 Google Scholar
4 Grahl-Madsen, L., Engeil, J., Riman, R.E., Ceramic Transactions 12, Ceramic Powder Science III, edited by Messing, G. L., Hirano, S. und Hausner, H., (American Ceramic Society, Westerville/Ohio, USA 1990), pp. 33-40 Google Scholar
5 Richardson, K., Akinc, M., Ceram. Int. 13, 253-261 (1987)Google Scholar
6 Naß, R. and Schmidt, H., J. Non-Cryst. Solids 121, 329-333 (1990)Google Scholar
7 Matejevic, E., Materials Science Monographs, 38A, 441-458 (1987)Google Scholar
8 Osseo-Asare, K. and Arriagada, F. J., Ceramic Transactions 12, Ceramic Powder Science III edited by Messing, G. L., Hirano, S. and Hausner, H., (American Ceramic Society, Westerville/Ohio, USA, 1990) 3-16 Google Scholar
9 Ramamurthi, S. D., Xu, Z. und Payne, D.A., J. Am. Ceram. Soc. 73, 2760-63 (1990)Google Scholar
10 Naß, R., Burgard, D., Schmidt, H., in: Proceedings of the 2nd European Conference on Sol-Gel Technology, edited by Naß, R., Schmidt, H. and Vilminot, S. (North Holland Publishers, Amsterdam, The Netherlands 1992)Google Scholar
11 Burgard, D., Master Thesis, University of Saarbrücken, Germany 1992 Google Scholar