Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-24T21:36:00.295Z Has data issue: false hasContentIssue false

Roughness Analysis of Si1-χGeχ Films

Published online by Cambridge University Press:  21 February 2011

R. M. Feenstra
Affiliation:
IBM Research Division, T. J. Watson Research Center, Yorktown Heights, NY 10598
M. A. Lutz
Affiliation:
IBM Research Division, T. J. Watson Research Center, Yorktown Heights, NY 10598
M. Copel
Affiliation:
IBM Research Division, T. J. Watson Research Center, Yorktown Heights, NY 10598
Get access

Abstract

The morphology of Si1-χGeχ films is studied using atomic force microscopy (AFM) and scanning tunneling microscopy (STM). Depending on growth temperature and Ge content, growth proceeds in either a layer-by-layer mode or by me growth of 3-dimensional coherent islands. In the former case strain relaxation occurs by formation and multiplication of misfit dislo-cations, leading to a cross-hatched surface morphology. In the latter case the rough morphology leads to a higher density of nucleation sites, and reduced glide efficiency, for the dislocations. A Fourier transform based method for analyzing the morphology is introduced, and is compared with other, existing roughness analysis methods.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Eklund, E. A., Snyder, E. J., and Williams, R. S., Surf. Sci. 285, 157 (1993).Google Scholar
2. Spanos, L. and Irene, E. A., J. Vac. Sci. Technol. A 12, 2646 (1994).Google Scholar
3. Salditi, T., Metzger, T. H., and Peisl, J., Phys. Rev. Lett. 73, 2228 (1994).Google Scholar
4. Swaddling, P. P., McMorrow, D. F., Cowley, R. A., Ward, R. C. C., and Wells, M. R., Phys. Rev. Lett. 73, 2232 (1994).Google Scholar
5. Family, F., Physica A 168, 561 (1990).Google Scholar
6. Lutz, M. A., Feenstra, R. M., LeGoues, F. K., Mooney, P. M., and Chu, J. O., Appl. Phys. Lett. 66, Feb. 6 issue (1995).Google Scholar
7. Lutz, M. A., Feenstra, R. M., Mooney, P. M., Tersoff, J., and Chu, J. O., Surf. Sci. Lett. 316, L1075 (1994).Google Scholar
8. Feenstra, R. M., Lutz, M. A., Stern, F., Ismail, K., Mooney, P. M., LeGoues, F. K., Chu, J. O., and Meyerson, B. S., to be published.Google Scholar
9. Meyerson, B. S., Appl. Phys. Lett. 48, 797 (1986).Google Scholar
10. Blackman, R. B. and Tukey, J. W., The Measurement of Power Spectra (Dover, New York, 1958).Google Scholar
11. Fitzgerald, E. A., Xie, Y.-H., Monroe, D., Silverman, P. J., Kuo, J. M., Kortan, A. R., Thiel, F. A., and Weir, B. E., J. Vac. Sci. Technol. B 10, 1807 (1992).Google Scholar
12. Chang, K. H., Gibala, R., Srolovitz, D. J., Bhattacharya, P. K., and Mansfield, J. F., J. Appl. Phys. 67, 4093 (1990).Google Scholar
13. LeGoues, F. K., Meyerson, B. S., Morar, J. F., and Kirchner, P. D., J. Appl. Phys. 71, 4230 (1992).Google Scholar
14. Pietsch, G. J., Köhler, U., and Henzler, M., J. Appl. Phys. 73, 4797 (1993).Google Scholar
15. Pidduck, A. J., Robbins, D. J., Cullis, A. G., Leong, W. Y., and Pitt, A. M., Thin Solid Films 222, 78 (1992).Google Scholar
16. Tersoff, J. and LeGoues, F. K., Phys. Rev. Lett. 72, 3570 (1994).Google Scholar
17. Goodnick, S. M., Ferry, D. K., Wilmsen, C. W., Liliental, Z., Fathy, D., and Krivanek, O. L., Phys. Rev. B 32, 8171 (1985).Google Scholar
18. Lent, C. S. and Cohen, P. I., Surf. Sci. 139, 121 (1984).Google Scholar