Skip to main content Accessibility help
×
Home

Room-temperature Photoluminescence at 1540 nm from Amorphous Silicon Carbide Films Implanted with Erbium

  • Spyros Gallis (a1), Harry Efstathiadis (a1), Mengbing Huang (a1), Alain E. Kaloyeros (a1), Ei Ei Nyein (a2) and Uwe Hommerich (a2)...

Abstract

In the present work, strong room-temperature photoluminescence (PL) at 1540 nm is reported from erbium-implanted and post-annealed amorphous silicon carbide (a-SiC:Er) films. The stoichiometric SiC films were grown by thermal chemical vapor deposition (TCVD) at 800°C, and then implanted to Er fluence of 3×1015 ions/cm2 using 380 keV implantation energy. Post-implantation annealing was carried out at the temperature range of 550°C to 1350°C in argon (Ar) ambient. The resulting SiC films were characterized by Auger electron spectroscopy (AES), Rutherford backscattering (RBS), Fourier transform infrared spectroscopy (FTIR), nuclear reaction analysis (NRA), x-ray diffraction (XRD), and high-resolution transmission electron microscope (HRTEM). Clear PL behavior was seen from the annealed a-SiC:Er samples, even at room temperature, with PL intensity reaching a maximum for samples annealed at 900°C.

Additional studies of thermal quenching of Er luminescence from a-SiC:Er samples annealed at 900°C indicated that as the sample temperature increased from 14K to room temperature, the luminescence intensity at 1540 nm dropped by a factor of ∼ 3.6. Moreover, the PL spectra of the a-SiC:Er samples did not exhibit any defect-generated luminescence. It is suggested that the lower density of Si and C vacancies in the stoichiometric a-SiC:Er, as compared to its non-stoichiometric a-Si1-xCx counterpart, along with the incorporation of a higher Er dopant concentration, can effectively diminish defect-produced luminescence and lead to a significant improvement in PL performance.

These properties suggest that stoichiometric a-SiC:Er may be a good candidate for producing optoelectronic devices operating in the 1540 nm region.

Copyright

References

Hide All
1. Polman, A., J. Appl. Phys. 82, 1 (1997).
2. Coffa, S., Franzò, G. and Priolo, F., MRS Bulletin 23, 25 (1998).
3. Favennec, P. N., L'Haridon, H., Salvi, M., Moutonnet, D. and Guillon, Y. Le, Electron. Lett. 25, 718 (1989).
4. Rare Earth Doped Semiconductors II, edited by Coffa, S., Polman, A. and Schwartz, R. N., Mat. Res. Soc. Symp. Proc. 442 (1996) (MRS, Pittsburgh).
5. Zanatta, A. R., Appl. Phys. Lett. 82, 1395 (2003).
6. Terukov, E. I., Kudoyarova, V. Kh., Kuznetsov, A. N., Fuhs, W., Weiser, G. and Küehne, H., J. Non-Cryst. Solids 227–230, 488 (1998).
7. Küehne, H., Weiser, G., Terukov, E. I., Kuznetsov, A. N. and Kudoyarova, V. Kh., J. Appl. Phys. 86, 896 (1999).
8. Biersack, J. P. and Haggmark, L. G., Nucl. Instrum. Methods 174, 257 (1980).
9. Awahara, K., Uekusa, S., Goto, T., Kobayashi, T. and Kumagai, M., Nucl. Instr. & Methods Phys. Res. B 148, 507 (1999).
10. Foti, G., Appl. Surf. Sci. 184, 20 (2001).
11. Przybylinska, H., Jantsch, W., Suprun-Belevitch, Y., Stepikhova, M., Palmetshofer, L., Hendorfer, G., Kozanecki, A., Wilson, R. J. and Sealy, B. J., Phys. Rev. B 54, 2532 (1996).
12. Huang, M. B. and Ren, X. T., Phys. Rev. B 68, 33203 (2003).
13. Choyke, W. J., Devaty, R. P., Clemen, L. L., Yoganathan, M., Pensl, G. and Hässler, Ch., Appl. Phys. Lett. 65, 1668 (1994).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed