Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-16T19:13:42.719Z Has data issue: false hasContentIssue false

Room Temperature Resonant Tunneling and Coulomb Blockade in Nanocrystalline Si with Double SiO2

Published online by Cambridge University Press:  01 February 2011

Barriers L. C. Wu
Affiliation:
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
K. J. Chen
Affiliation:
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
M. Dai
Affiliation:
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
W. Li
Affiliation:
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
L. W. Yu
Affiliation:
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
X. F. Huang
Affiliation:
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
Get access

Abstract

We studied electron resonant tunneling and Coulomb blockade in nanocrystalline Si (nc-Si) with double SiO2 barriers, which is fabricated in-situ in a plasma enhanced chemical vapor deposition system. In capacitance-voltage measurements, discrete capacitance peaks due to electron resonant tunneling into energy levels of nc-Si dots and Coulomb blockade charging in nc-Si dots have been observed at room temperature. For smaller dots, capacitance peaks are more distinct due to the stronger Coulomb blockade effect. Meanwhile, conductance plateau in the region of capacitance peaks are also observed due to the charging effect in nc-Si dots. Experimental results are in agreement with theoretical evaluation based on the model of Coulomb blockade.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ikeda, H., Iwasaki, M., Ishikawa, Y., and Tabe, M., Appl. Phys. Lett. 83, 1456 (2003)Google Scholar
2. Kouwatsos, D. N., Ioannou-Sougleridis, V., and Nassiopoulou, A. G., Appl. Phys. Lett. 82, 397 (2003)Google Scholar
3. Ishikawa, Y., Ishihara, T., Iwasaki, M., and Tabe, M., Electron Lett. 37, 1200 (2001)Google Scholar
4. Qin, H., Gu, X., Lu, H., Liu, J., Huang, X., and Chen, K., Solid State Commun. 111, 171 (1999)Google Scholar
5. Tiwari, S., Rana, F., Hanafi, H., Hartstein, A., Crabbe, E. F., and Chan, K., Appl. Phys. Lett. 68, 1377 (1996)Google Scholar
6. Geerligs, L. J., Anderegg, V. F., Holweg, P. A. M., Mooil, J. E., Pothier, H., Estere, D., Urbina, C., and Devoret, M. H., Phys. Rev. Lett. 64, 2691 (1990)Google Scholar
7. Chen, M. R., and Chen, K. J., ACTA PHYSICA SINICA 3, 250 (1994)Google Scholar
8. Luyken, R. J., Lorke, A., Govorov, A. O., Kotthaus, J. P., Medeiros-Ribeiro, G. and Petroff, P.M., Appl. Phys. Lett. 74, 2486 (1999)Google Scholar
9. Ashoori, R. C., Stormer, H. L., Weiner, J. S., Pfeiffer, L. N., Baldwin, K. W., and West, K. W., Phys. Rev. Lett. 71, 613 (1993)Google Scholar