Hostname: page-component-7bb8b95d7b-dvmhs Total loading time: 0 Render date: 2024-09-18T01:51:21.026Z Has data issue: false hasContentIssue false

Role of Spin-Orbital Splitting of 5f-Orbitals of Uranium Atom in the Formation of Its Chemical State

Published online by Cambridge University Press:  01 February 2011

Yuri F. Batrakov
Affiliation:
Department of Radiochemistry, Faculty of Chemistry, St. Petersburg State University, 7/9 Universitetskaja emb., St. Petersburg, 199034, Russia Email: x-ray@ak11168.spb.edu
Andrey G. Krivitsky
Affiliation:
Department of Radiochemistry, Faculty of Chemistry, St. Petersburg State University, 7/9 Universitetskaja emb., St. Petersburg, 199034, Russia Email: x-ray@ak11168.spb.edu
Elena V. Puchkova
Affiliation:
Department of Radiochemistry, Faculty of Chemistry, St. Petersburg State University, 7/9 Universitetskaja emb., St. Petersburg, 199034, Russia Email: x-ray@ak11168.spb.edu
Get access

Abstract

Chemical shifts (ChSh) of nine emission lines of the uranium L-series in uranium oxides UO2+x (x=0−1) with respect to UO2 were studied by using a precise crystal-diffraction X-ray spectrometer and the changes in energy of spin-orbital splitting (SOS) − Δδnl± of inner nl-orbitals of the uranium atom were calculated from the data of ChSh of spin-doublet lines. For UO2+x oxides, a linear decrease in Δδnl± values with increasing degree of uranium oxidation was found.

On the basis of the comparison of experimental Δδnl± values with Dirac-Hartree-Fock atomic calculations, it was concluded that the observed variations in Δδnl± values are due to the redistribution of electron and spin density between the 5f7/2- and 5f5/2-levels of the fine structure of the uranium atom without changes in atomic charge state.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pyykko, P., Chem. Rev., 88, 563 (1988).Google Scholar
2. Schwarz, W.H.E., van Wezenbeek, E.M., Baerends, E.J., Snijders, J.C., J. Phys. B.: At. Mol. Opt. Phys. 22, 1515 (1989).Google Scholar
3. Pepper, M., Bursten, B.E., Chem. Rev., 91, 719 (1991).Google Scholar
4. Teterin, Yu.A., Terechov, V.A., Ryzhkov, M.V., et al., J. Electron Spectrosc. Relat. Phenom., 114, 915 (2001).Google Scholar
5. Moser, H.R., Delley, B., Schneider, W.D., Baer, Y., Phys. Rev., B 29, 2947 (1984).Google Scholar
6. Veal, B.W., Lam, D.J., Phys. Rev., B, 10, 4902 (1974).Google Scholar
7. Batrakov, Yu.F., Makarov, L.L., Vestnik SPbGU. Ser. 4, 4, 40 (1995) (in Russian).Google Scholar
8. Makarov, L.L., Czech. J. Phys. 49, suppl. S1, part 2, 610 (1999).Google Scholar
9. Gohshi, Y., Ohtsuka, A., Spectrochim. Acta, B, 28, 179 (1973).Google Scholar
10. Sumbaev, O.I., Phys. Letters, A, 30, 129 (1969).Google Scholar
11. Sumbaev, O.I., Crystal-diffraction gamma-spectrometers. GosAtomIzdat, Moscow, 1963, p. 110111 (in Russian).Google Scholar
12. Cauchois, Y., J. Phys. Rad. 3, 320 (1932).Google Scholar
13. Salem, S.I., Boehm, F., Lee, P.L., Nucl. Instr. Methods, 140, 511 (1977).Google Scholar
14. Mamedov, S.B., Aksenov, N.D., Makarov, L.L., Batrakov, Yu.F., J. Non-cryst. solids, 195, 272 (1996).Google Scholar
15. Makarov, L.L., Karazija, R.I., Batrakov, Yu.F., Chibisov, N.P., et al., Radiokhimija (Radiochemistry), 20, 116 (1978) (in Russian).Google Scholar
16. Katz, J.J., Seaborg, G.T., Morss, L.R., The chemistry of the actinide elements, 2nd ed., Chapman and Hall, New York 1986.Google Scholar