Hostname: page-component-84b7d79bbc-g78kv Total loading time: 0 Render date: 2024-07-25T22:52:23.420Z Has data issue: false hasContentIssue false

Role of Spin Momentum Current in Magnetic Non-Local Damping of Ultrathin Film Structures

Published online by Cambridge University Press:  10 February 2011

G. Woltersdorf
Affiliation:
Simon Fraser University, 8888 University Dr., Burnaby, BC, V5A 1S6, Canada
R. Urban
Affiliation:
Simon Fraser University, 8888 University Dr., Burnaby, BC, V5A 1S6, Canada
B. Heinrich
Affiliation:
Simon Fraser University, 8888 University Dr., Burnaby, BC, V5A 1S6, Canada
Get access

Abstract

Non-local damping was investigated by Ferromagnetic Resonance (FMR) using ultrathin magnetic single and double layer structures prepared by Molecular Beam Epitaxy (MBE). The double layer structures show magnetic damping which is caused by spin transport across a normal metal spacer (N). In double layer structures a thin Fe layer, F1, was separated from a thick Fe layer, F2, by a Au(001) spacer. The interface magnetic anisotropies separated the FMR fields of F1 and F2 by a big margin allowing one to investigate FMR in F1 while F2 had a negligible angle of precession, and vice versa. The Fe films in magnetic double layers acquire non-local interface Gilbert damping. It will be shown that the precessing magnetic moments act as spin pumps and spin sinks. This concept was tested by investigating the FMR linewidth around an accidental crossover of the resonance fields for the layers F1 and F2. There is another possible mechanism for non-local damping which is based on a “breathing Fermi surface” of the spacer. The temperature dependence of the non-local damping indicates that this mechanism is weak in Au spacers. Surprisingly the Au spacer acts as an additional impedance for the spin pump mechanism. Finally, it will be shown that electron-electron correlations in a Pd spacer can lead to a significant enhancement of the non-local damping.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

[1] Heinrich, B. and Cochran, J. F., Adv. Phys. 42, 523 (1993).Google Scholar
[2] Urban, R., Woltersdorf, G., and Heinrich, B., Phys. Rev. Lett. 87, 217204 (2001).Google Scholar
[3] Heinrich, B., Urban, R., and Woltersdorf, G., IEEE Trans. Mag. 38, 2496 (2002).Google Scholar
[4] Heinrich, B., Woltersdorf, G., Urban, R., and Simanek, E., Conference on Mag. Mag. Mat., Tampa, Florida, 2002, J. Appl. Phys. (submitted).Google Scholar
[5] Heinrich, B., Urban, R., and Woltersdorf, G., J. Appl. Phys. 91, 7523 (2002).Google Scholar
[6] Heinrich, B. and Bland, J. A. C., Ultrathin Magnetic Structures II. (Spinger-Verlag, 1994), section Radio Frequency Techniques.Google Scholar
[7] Enders, A., Monchesky, T., Myrtle, K., Urban, R., Heinrich, B., Kirschner, J., Zhang, X.-G., and Butler, W., J. Appl. Phys. 89, 7110 (2001).Google Scholar
[8] Tserkovnyak, Y., Brataas, A., and Bauer, G., Phys. Rev. Lett. 88, 117601 (2002).Google Scholar
[9] Brataas, A., Tserkovnyak, Y., Bauer, G., and Halperin, B., Phys. Rev. B 66, id060404 (2002).Google Scholar
[10] Brataas, A., Nazarov, Y., and Bauer, G., Erp. Phys. J. B 22, 99 (2001).Google Scholar
[11] Xia, K., Kelly, P., Bauer, G., Brataas, A., and Turek, I., Phys. Rev. B 65, 220401 (R) (2002).Google Scholar
[12] Stiles, M. and Zangwill, A., J. Appl. Phys. 91, 6812 (2002).Google Scholar
[13] Heinrich, B., Woltersdorf, G., Urban, R., and Simanek, E., Moscow International Symposium on Magnetism, Moscow 2002, J. Mag. Mag. Mat. (in press).Google Scholar
[14] Slonczewski, J., J. Mag. Mag. Mater. 126, 374 (1993).Google Scholar
[15] Simanek, E. and Heinrich, B., arXiv:cond-mat/0207471 (2002).Google Scholar
[16] Heinrich, B., Fraitová, D., and Kamberský, V., Phys. Stat. Sol. 23, 501 (1967).Google Scholar
[17] Heinrich, B. and Bland, J. A. C., Ultrathin Magnetic Structures III (Springer Verlag, 2003), chap. B. Heinrich on Spin Relaxations in Magnetic Metallic Layers and Multilayers.Google Scholar
[18] Kriesman, C. and Callen, H., Phys. Rev. 94, 837 (1954).Google Scholar
[19] Korenman, V. and Prange, R., Phys. Rev. B 6, 2769 (1972).Google Scholar
[20] Kamberský, V., Can. J. Phys. 48, 2906 (1970).Google Scholar
[21] Elliot, R. J., Phys. Rev. 96, 266 (1954).Google Scholar
[22] Silsbee, R., Janossy, A., and Monod, P., Phys. Rev. B 19, 4382 (1979).Google Scholar
[23] Mizukami, S., Ando, Y., and Miyazaki, T., J. Mag. Mag. Mat. 226, 1640 (2001).Google Scholar
[24] Urban, R., Woltersdorf, G., and Heinrich, B., J. Appl. Phys. (submitted).Google Scholar
[25] Slonczewski, J., J. Appl. Phys. 73, 5957 (1993).Google Scholar
[26] Brodsky, M. and Freeman, A., Phys. Rev. Lett. 45, 133 (1980).Google Scholar