Skip to main content Accessibility help
×
Home

The Role of Silicon Monohydride and Dihydride in the Photoluminescence of Porous Silicon and Photoluminescence of Porous Silicon Buried Underneath Epitaxial GaP

  • C. Tsai (a1), K.-H. Li (a1), J. Sarathy (a1), K. Jung (a1), S. Shih (a1), B. K. Hance (a2), J. M. White (a2), D.-L. Kwong (a2), P. R. Sharps (a3), M. L. Timmons (a3), R. Venkatasubramanian (a3), J. A. Hutchby (a3) and J. C. Campbell (a1)...

Abstract

Thermal annealing studies of the photoluminescence (PL) intensity and Fourier-transform infrared (FTIR) spectroscopy have been performed concurrently on porous Si. A sharp reduction in the PL intensity is observed for annealing temperatures > 300 °C and this coincides with desorption of hydrogen from the SiH2 surface species. The role of silicon hydride species on the photoluminescence intensity has been studied. The surfaces of luminescent porous Si samples were converted to a predominate SiH termination using a remote H-plasma. The as-passivated samples were then immersed in various concentrations of hydrofluouric solutions to regulate the recovery of SiH2 termination on the surface. Photoluminescence measurements and transmission Fourier-transform infrared spectroscopy have shown that predominant silicon monohydride (SiH) termination results in weak photoluminescence. In contrast, it has been observed that the appearance of silicon dihydride (SiH2) coincides with an increase in the photoluminescence intensity. To achieve electroluminescence it will be beneficial to generate carriers with sufficient energy to populate the states of the quantum-confined Si structures. A viable method to accomplish this is to utilize a wide-bandgap heterojunction injector such as GaP. Toward that end we report the successful formation of porous Si buried underneath GaP islands and we demonstrate that the buried porous Si layer exhibits strong photoluminescence.

Copyright

References

Hide All
1. Canham, L.T., Appl. Phys. Lett. 57, 1046 (1990).
2. Halimaoui, A., Oules, C., Bomchil, G., Bsiesy, A., Gaspard, F., Herino, R., Ligeon, M., and Muller, F., Appl. Phys. Lett. 59, 304 (1991).
3. Cullis, A.G., and Canham, L.T., Nature. Lett. 353, 26 (1991).
4. Furufkawa, S. and Mijasati, T., Phys. Rev. B38, 5726 (1988).
5. Wolford, D. J., Scott, B. A., Reimer, J. A., and Bradley, J. A., Physica B 117/118, 920 (1983).
6. Street, R. A., in Semiconductors and Semimetals, edited by Pankove, J. I., vol.21, part B, p.197, Academic Press, Orlando, FL, 1984.
7. Rao, A. Venkateswara, Ozanam, F., and Chazalviel, J.-N., J.Electrochem. Soc. 138, 153 (1991)
8. Gupta, P., Colvin, V.L., and George, S.M., Phys. Rev. B37, 8234 (1988)
9. Dillon, A. C., Gupta, P., Robinson, M. B., Bracker, A. S., George, S. M., J. Electron Spectrosc. Relat. Phenom. 54/55, 1085 (1990).
10. Gupta, P., Dillon, A. C., Coon, P. A., and George, S. M., Chem. Phys. Lett. 176, 128 (1991).
11. Herino, R., Bomchil, G., Barla, K., and Bertrand, C., J. Electrochem. Soc. 134,1994 (1987).
12. Beale, M.I.J., Benjamin, J.D., Uren, M.J., Chew, N.G. and Cullis, A.G., J. Crystal Growth 73, 622 (1985).
13. Bomchil, G.,Halimaoui, A., and Herino, R., Microelectronic Engineering 8,293 (1988).
14. Chung, S.F., Collins, S.D., and Smith, R.L., Appl. Phys. Lett. 55, 675 (1989).
15. Kannon, K. C. and White, J. M., J. Catal. 120, 314 (1989).
16. Kaiser, W., Keck, P. H., and Lange, C. F., Phys. Rev. 101, 1264 (1956).
17. Hrostowski, H. J. and Kaiser, R. H., Phys. Rev. 107, 966 (1957).
18. Wagner, H., Butz, R., Backes, U., and Bruchmann, D., Solid State Comm. 38, 1155 (1981).
19. Stucki, F., Schaefer, J. A., Anderson, J. R., Lapeyre, G. J., and Gopel, W., Solid State Comm. 47, 795 (1983).
20. Bordsky, M. H., Cardona, M., and Cuomo, J. J., Phys. Rev. B 16, 3356 (1977).
21. Collins, R. J. and Fan, H. Y., Phys. Rev. 93, 674 (1954).
22. Breaux, L., Anthony, B., Hsu, T., Banerjee, S., and Tasch, A. F., Appl. Phys. Lett. 55, 1885 (1989).
23. Anthony, B., Hsu, T., Breaux, L., Qian, R., Banerjee, S., and Tasch, A., J. Electron. Mater. 19, 1027 (1990).
24. Chabal, Y. J., Raghavachari, K., Phys. Rev. Let. 53, 282 (1984).
25. Chabal, Y. J., Raghavachari, K., Phys. Rev. Let. 54, 1055 (1985).
26. Olson, J. M., AlJassim, M. M., Kibbler, A. E., and Jones, K. M., J. Crystal Growth 77, 515 (1986)
27. Blakeslee, A. E., Al-Jassim, M. M., and Asher, S. E., Mater. Res. Soc. Symp. Proc. 91, 105 (1987).
28. Tsao, S. S., Guilinger, T. R., Kelly, M. J., Kaushik, V. S., and Datye, A. K., J. Electrochem. Soc. 138, 1739 (1991).
29. Takagi, H., Ogawa, H., Yamasaki, Y., Ishizaki, A., and Nakagiri, T., Appl. Phys. Lett. 56, 2379 (1990).

The Role of Silicon Monohydride and Dihydride in the Photoluminescence of Porous Silicon and Photoluminescence of Porous Silicon Buried Underneath Epitaxial GaP

  • C. Tsai (a1), K.-H. Li (a1), J. Sarathy (a1), K. Jung (a1), S. Shih (a1), B. K. Hance (a2), J. M. White (a2), D.-L. Kwong (a2), P. R. Sharps (a3), M. L. Timmons (a3), R. Venkatasubramanian (a3), J. A. Hutchby (a3) and J. C. Campbell (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed