Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-28T19:30:41.707Z Has data issue: false hasContentIssue false

Role of Hydrogen in the Grain Growth in Microcrystalline Silicon Films

Published online by Cambridge University Press:  01 February 2011

Gye-Hyun Lee
Affiliation:
Department of Physics, Kangwon National University, 192-1 Hyoja-dong, Chuncheon, Kangwon-do, 200-701, Korea, Republic of
Jong-Hwan Yoon
Affiliation:
jhyoon@kangwon.ac.krKangwon National UniversityDepartment of Physics192-1 Hyoja-dongChuncheonKangwon-do200-701Korea, Republic of
Get access

Abstract

Thick microcrystalline silicon (mc-Si:H) films were exposed to atomic hydrogen plasma at substrate temperature of 220°C after deposition. The microstructure of μc-Si:H films after exposure was characterized using Raman back scattering spectroscopy and transmission electron microscopy (TEM). Raman spectra reveal that the intensity near 520 cm−1 significantly increases after hydrogen exposure, indicating an increase of crystallinity in the films. TEM micrographs of μc-Si:H films exposed to atomic hydrogen also show an increase in the size of grains and a growth of crystalline grains ranging from surface to bulk. These results suggest that crystalline grain formation in μc-Si:H films is likely to be caused by chemical annealing.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Iqbal, Z., Webb, A. P., Veprek, S., Appl. Phys. Lett. 36, 163 (1980).Google Scholar
2. Matsuda, A., Yamasaki, S., Nakagawa, K., Okushi, H., Tanaka, K., Iizima, S., Matsumura, M., Yamamoto, H., Jan. J. Appl. Phys. 19, L305 (1980).Google Scholar
3. Matsuda, A., J. Non-Cryst. Solids 59/60, 767 (1983).Google Scholar
4. Asano, A., Appl. Phys. Lett. 56, 533 (1990).Google Scholar
5. Nakamura, K., Yoshida, K., Takeoka, S., Shimizu, I., Jan. J. Appl. Phys. 34, 442 (1995).Google Scholar
6. Robertson, R., Hills, D., Chatham, H., Gallagher, A., Appl. Phys. Lett. 43, 544 (1983).Google Scholar
7. Matsuda, A., Nomoto, K., Tacheuchi, Y., Suzuki, A., Yuuki, A., Perrin, J., Surf. Sci. 227, 50 (1990).Google Scholar
8. Tsai, C.C., Anderson, G.B., Thompson, R., Wacker, B., J. Non-Cryst. Solids 114, 151 (1989).Google Scholar
9. Veprek, S., Sarott, F.A., Iqbal, Z., Phys. Rev. B 36, 3344 (1987).Google Scholar
10. Fujiwara, H., Kondo, M., Matsuda, A., Phys. Rev. B 63, 115306 (2001).Google Scholar
11. Jackson, W. B. and Tsai, C.C., Phys. Rev. B 45, 6564 (1992).Google Scholar
12. Keudell, A. von and Abelson, J.R., Appl. Phys. Lett. 71, 3832 (1997).Google Scholar
13. Cabarrocas, P. Roca i, Hamma, S., Thin Solid Films 337, 23 (1999).Google Scholar
14. Yoon, J. H., Lee, K. T., J. Non-Cryst. Solids 299/302, 487 (2002).Google Scholar
15. Godet, C., Layadi, N., Cabarrocas, P. Roca i, Appl. Phys. Lett. 66, 3146 (1995).Google Scholar