Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-23T15:58:52.250Z Has data issue: false hasContentIssue false

The Role of Dispersoids in Mechanically Alloyed NiAl

Published online by Cambridge University Press:  01 January 1992

S. Dymek
Affiliation:
Department of Metallurgical and Materials Engineering, Illinois Institute of Technology, Chicago, Il 60616
M. Dollar
Affiliation:
Department of Metallurgical and Materials Engineering, Illinois Institute of Technology, Chicago, Il 60616
S.J. Hwang
Affiliation:
Department of Metallurgical and Materials Engineering, Illinois Institute of Technology, Chicago, Il 60616
P. Nash
Affiliation:
Department of Metallurgical and Materials Engineering, Illinois Institute of Technology, Chicago, Il 60616
Get access

Abstract

Mechanical alloying followed by hot extrusion has been used to produce fully dense, crack free, very fine grained NiAl-based alloys containing a bimodal distribution of aluminum oxide dispersoids. The unique microstructure provides the materials with high strength and good compressive ductility at ambient and elevated temperatures. The emphasis of the paper is on the importance of the dispersion phase in controlling grain size, texture, deformation mechanisms and ultimately mechanical properties of the mechanically alloyed NiAl-based materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Darolia, R., J. of Metals, 43, #3, 44 (1991).Google Scholar
2. Dimiduk, D.M., Miracle, D.B. and Ward, C.H., Mat.Sci.Techn., 8, 367 (1992).Google Scholar
3. Kallend, J.S., Kocks, U.F., Rollet, A.D. and Wenk, H.-R., Mat. Sci. Eng., A132, 1 (1991).Google Scholar
4. Van Den Beukel, A., phys. stat. sol., 30, 197 (1975).Google Scholar
5. Wycliffe, P., Kocks, U.F. and Embury, J.D., Scripta Met., 14, 1349 (1980).Google Scholar
6. Khadkakir, P.S., Michal, G.M. and Vedula, K., Metall. Trans., 21A, 279 (1990).Google Scholar
7. Raj, S.V., Noebe, R.D. and Bowman, R., Scripta Met., 23, 2049 (1989).Google Scholar
8. Hatherly, M. and Hutchinson, W.B., An Introduction to Textures in Metals, Institution of Metallurgists, London 1979.Google Scholar
9. Honeycombe, R.W.K., The Plastic Deformation of Metals, p. 327, Edward Arnold (Publ.), American Society for Metals (1984).Google Scholar
10. Hornbogen, E. and Köster, U., Recrystallization of Metallic Materials, Rieder-Verlag GMBH, Stuttgart 1978.Google Scholar
11. Ralph, B., Mat. Sci. Techn., 6, 1139 (1990).Google Scholar
12. Grest, G.S., Srolovitz, D.J. and Anderson, M.P., Acta Met., 33, 509 (1985).Google Scholar
13. Nagpal, P. and Baker, I., Scripta Met., 24, 2381 (1990).Google Scholar
14. Barker, D., M.S. Thesis, Dartmouth College, 1992.Google Scholar
15. Hwang, S.H., PhD. Thesis, Illinois Institute of Techn., Chicago, 1992.Google Scholar
16. Dymek, S., Dollar, M., Hwang, S.J. and Nash, P., Mat. Sci. Eng., A152, 160 (1992).Google Scholar
17. Nardone, V.C., Matejczyk, D.E. and Tien, J.K., Acta Met., 32, 1509 (1984).Google Scholar
18. Schröder, J.H. and Arzt, E., Scripta Met., 19, 1129 (1985).Google Scholar
19. Sellars, C.M. and Petkovic-Luton, R.A., Mat. Sci. Eng., 46, 75 (1980).Google Scholar
20. Jha, S.C., Ray, R. and Caydosh, D.J., Scripta Met., 23, 805 (1989).Google Scholar
21. Srolovitz, D.J., Luton, M.J., Petkovic-Luton, R., Barnett, D.M. and Nix, W.D., Acta Met., 32, 1079(1984).Google Scholar
22. Srolovitz, D., Petkovic-Luton, R. and Luton, M.J., Scripta Met., 16, 1401 (1982).Google Scholar
23. Arzt, E. and Wilkinson, D.S., Acta Met., 34, 1893 (1986).Google Scholar