Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T20:42:20.686Z Has data issue: false hasContentIssue false

Role of As in the Anisotropic Positioning of Self-Assembled InAs Quantum Dots

Published online by Cambridge University Press:  18 July 2013

Fabrizio Arciprete
Affiliation:
Dipartimento di Fisica, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica 1, I-00133 Roma, Italy,
Ernesto Placidi
Affiliation:
Dipartimento di Fisica, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica 1, I-00133 Roma, Italy, CNR-ISM, Via Fosso del Cavaliere 100, I-00133 Roma,
Rita Magri
Affiliation:
Dipartimento di Fisica, Università di Modena e Reggio Emilia, and Centro S3 CNR-Istituto, Nanoscienze, Via Campi 213/A, 4100 Modena, Italy.
Massimo Fanfoni
Affiliation:
Dipartimento di Fisica, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica 1, I-00133 Roma, Italy,
Adalberto Balzarotti
Affiliation:
Dipartimento di Fisica, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica 1, I-00133 Roma, Italy,
Fulvia Patella
Affiliation:
Dipartimento di Fisica, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica 1, I-00133 Roma, Italy,
Get access

Abstract

Progress in tailoring the size, shape and positioning of Quantum Dots on the substrate is crucial for their potential applications in new optoelectronic devices for nano-photonics as well as in quantum information and computation. Using Molecular Beam Epitaxy in pulsed deposition mode we demonstrate that the nucleation of InAs Quantum Dots can be selectively guided on the GaAs(001) surface by a suitable choice of the kinetic parameters for the growth of both the GaAs buffer layer and the InAs Quantum Dots. By developing a two-species rate-equation kinetic model we show that the positioning of the Quantum Dots on only one side of mounds of the GaAs buffer can be traced back to the very small As flux gradient between the two mound slopes $\left( {\Delta F_A /F_A \approx 1 - 5\% } \right)$ caused by the proper tilting of the incoming As flux. Such gradient originates, at the relatively high growth-temperature, a net cation flow from one slope of the mound to the other that is responsible for the selective growth.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

See e.g.: Stangl, J., Holy, V. and Bauer, G., Rev. Mod. Phys. 76, 725 (2004) and reference therein.CrossRefGoogle Scholar
Placidi, E., Arciprete, F., Fanfoni, M., Patella, F., Orsini, E., and Balzarotti, A., J. Phys.: Condens. Matter 19, 225006 (2007).Google Scholar
Kiravittaya, S., Rastelli, A. and Schmidt, O. G., Appl. Phys. Lett. 432, 81 (2004).Google Scholar
Patella, F., Arciprete, F., Placidi, E., Fanfoni, M., Balzarotti, A., Vinattieri, A., Cavigli, L., Abbarchi, M., Gurioli, M., Lunghi, L. and Gerardino, A., Appl. Phys. Lett. 93, 231904 (2008).CrossRefGoogle Scholar
Yang, B., Liu, F. and Lagally, M. G., Phys. Rev. Lett. 92, 025502 (2004).CrossRefGoogle Scholar
Tersoff, J., Teichert, C. and Lagally, M. G., Phys. Rev. Lett. 76, 1675 (1996).CrossRefGoogle Scholar
Wang, Z. M., Holmes, K., Mazur, Y. I. and Salamo, G. J., Appl. Phys. Lett. 84, 1931 (2004).CrossRefGoogle Scholar
Heidemeyer, H., Denker, U., Müller, C. and Schmidt, O. G., Phys. Rev. Lett. 91, 196103 (2003).CrossRefGoogle Scholar
Johnson, M. D., Orme, C., Hunt, A. W., Graff, D., Sudijono, J., Sander, L. M., and Orr, B. G., Phys. Rev. Lett. 72, 116 (1994).CrossRefGoogle Scholar
Patella, F., Arciprete, F., Placidi, E., Nufris, S., Fanfoni, M., Sgarlata, A., Schiumarini, D. and Balzarotti, A., Appl. Phys. Lett. 81, 2270 (2002).CrossRefGoogle Scholar
Ohtake, A. and Ozeki, M., Appl. Phys. Lett. 78, 431 (2001).CrossRefGoogle Scholar
Patella, F., Arciprete, F., Fanfoni, M., Balzarotti, A., and Placidi, E., Appl. Phys. Lett. 88,161903 (2006).CrossRefGoogle Scholar
Yakes, M. K., Cress, C. D., Tischler, J. G., and Bracker, A. S., ACS Nano 4, 3877 (2010).CrossRefGoogle Scholar
Heyn, C., Phys. Rev. B 66, 075307 (2002).CrossRefGoogle Scholar
Tok, E., Neave, J., Zhang, J., Joyce, B. and Jones, T., Surf. Sci. 374, 397 (1997).CrossRefGoogle Scholar
Morgan, C. G., Kratzer, P., and Scheffler, M., Phys. Rev. Lett. 82, 4886 (1999).CrossRefGoogle Scholar
Itoh, M., Bell, G. R., Avery, A. R., Jones, T. S., Joyce, B. A. and Vvedensky, D. D., Phys. Rev. Lett. 81, 633 (1998).CrossRefGoogle Scholar
Foxon, C., Joyce, B., Surf. Sci. 50, 434 (1975).CrossRefGoogle Scholar
Patella, F., Nufris, S., Arciprete, F., Fanfoni, M., Placidi, E., Sgarlata, A. and Balzarotti, A., Phys. Rev. B 67, 205308 (2003).CrossRefGoogle Scholar
Honma, T., Tsukamoto, S., Arakawa, Y., Jpn. J. Appl. Phys. 45, L777 (2006).CrossRefGoogle Scholar
Patella, F., Arciprete, F., Fanfoni, M., Sessi, V., Balzarotti, A., Placidi, E., Appl. Phys. Lett. 87, 252101 (2005).CrossRefGoogle Scholar
Arciprete, F., Placidi, E., Magri, R., Fanfoni, M., Balzarotti, A. and Patella, F., ACS Nano, (2013) (in press) DOI: 10.1021/nn401338v.Google Scholar
Rosini, M., Kratzer, P., and Magri, R., J. Phys: Condens. Matter 21, 355007 (2009).Google Scholar
Rosini, M., Magri, R., and Kratzer, P., Phys. Rev. B 77, 165323 (2008).CrossRefGoogle Scholar
Placidi, E., Dalla Pia, A., Arciprete, F., Appl. Phys. Lett. 94, 021901 (2009).Google Scholar
Arciprete, F., Placidi, E., Fanfoni, M., Patella, F., Della Pia, A., Balzarotti, A., Phys. Rev. B 81, 165306 (2010).CrossRefGoogle Scholar