Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-16T14:48:50.343Z Has data issue: false hasContentIssue false

Robust Microporous Molecular Frameworks Which Retain Structural Integrity Upon Template Loss

Published online by Cambridge University Press:  16 February 2011

C. J. Kepert
Affiliation:
Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3QR
M. J. Rosseinsky
Affiliation:
Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3QR
D. Hesek
Affiliation:
Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3QR
P. D. Beer
Affiliation:
Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3QR
Get access

Abstract

Retention of the void space upon loss of the solvent template is directly demonstrated using single-crystal X-ray diffraction for molecular frameworks constructed using both hydrogen and co-ordinate bonds. While the co-ordination polymer remains rigid upon desolvation, the extra flexibility in the hydrogen-bonded framework, due both to the large number of redundant hydrogen-bonding donor and acceptor groups and the possibility of significant φ-φ stacking interactions within the framework, lead to a significant structural and symmetry change while retaining significant void volume. Molecular modelling techniques are used to understand and predict the guest uptake chemistry of these host frameworks.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

(1) Allison, S. A.; Barrer, R. M., J. Chem. Soc. A 1717 (1969).Google Scholar
(2) Hoskins, B. F.; Robson, R., Journal Of The American Chemical Society 112, 1546 (1990).Google Scholar
(3) Batten, S. R.; Robson, R., Angewandte Chemie-International Edition 37, 1461 (1998).Google Scholar
(4) Venkataraman, D.; Lee, S.; Zhang, J. S.; Moore, J. S., Nature 371, 591 (1994).Google Scholar
(5) Yaghi, O. M.; Li, H. L.; Davis, C.; Richardson, D.; Groy, T. L., Accounts Of Chemical Research 31, 474 (1998).Google Scholar
(6) Yaghi, O. M.; Li, G. M.; Li, H. L., Nature 378, 703 (1995).Google Scholar
(7) Li, H.; Eddaoudi, M.; Groy, T. L.; Yaghi, O. M., Journal Of The American Chemical Society 120, 8571 (1998).Google Scholar
(8) Kondo, M.; Yoshitomi, T.; Seki, K.; Matsuzaka, H.; Kitagawa, S., Angewandte Chemie-International Edition In English 36, 1725 (1997).Google Scholar
(9) Yoneda, S.; Kawase, T.; Inaba, M.; Yoshida, Z., Journal of Organic Chemistry 43, 595 (1978).Google Scholar
(10) Sheldrick, G. M.; Universitat Gottingen, 1993.Google Scholar
(11) Otwinowski, Z.; Minor, W. In Methods in Enzymology; Carter, C. W., Sweet, R. M., Eds.; Academic Press: New York, 1996; pp 276.Google Scholar
(12) Power, K. N.; Hennigar, T. L.; Zaworotko, M. J., New Journal Of Chemistry 22, 177 (1998).Google Scholar
(13) Spek, A. L., Acta Cryst. A46, C (1990).Google Scholar
(14) Maxwell, I. E.; de Boer, J. J., J. Phys. Chem. 79, 1875 (1975).Google Scholar