Hostname: page-component-7bb8b95d7b-2h6rp Total loading time: 0 Render date: 2024-09-23T12:46:07.615Z Has data issue: false hasContentIssue false

Review of Facet Controlled Epitaxial Lateral Overgrowth (FACELO) of GaN via Low Pressure Vapor Phase Epitaxy

Published online by Cambridge University Press:  17 March 2011

Kazumasa Hiramatsu
Affiliation:
Dept. of Electrical and Electronic Engineering, Mie Univ., 1515 Kamihama, Tsu 514-8507
Hideto Miyake
Affiliation:
Dept. of Electrical and Electronic Engineering, Mie Univ., 1515 Kamihama, Tsu 514-8507
Get access

Abstract

Facet structures of GaN grown by epitaxial lateral overgrowth (ELO) via low pressure-metalorganic vapor phase epitaxy (LP-MOVPE) are controlled by growth conditions such as reactor pressure and growth temperature, where this technique is called FACELO (Facet Controlled ELO). The mechanism of the morphological change is discussed based on stability of the surface atoms. The propagation mechanism of the threading dislocations for the different GaN facet structure is also investigated. The distribution and density of the threading dislocations are observed by the growth pit density (GPD) method. Two typical models employing the FACELO are proposed; in one model, the dislocation concentrates only on the window area and, in the other model, only in the coalescence region in the center of the mask. In the latter model, the dislocation density is dramatically dropped to the order of 105−6 cm−2 with good reproducibility.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Kato, Y., Kitamura, S., Hiramatsu, K. and Sawaki, N., J. Cryst. Growth 144 (1994) 133.Google Scholar
[2] Kitamura, S., Hiramatsu, K. and Sawaki, N., Jpn. J. Appl. Phys. 34 (1995) L1184.Google Scholar
[3] Nam, O. H., Bremser, M. D., Ward, B. L., Nemanich, R. J. and Davis, R. F., Jpn. J. Appl. Phys. 36 (1997) L532.Google Scholar
[4] Underwood, R. D., Kapolnek, D., Keller, B. P., Keller, S., DenBaars, S. P. and Mishra, U. K., Solid State Electron. 41 (1997) 243.Google Scholar
[5] Tanaka, T., Uchida, K., Watanabe, A. and Minagawa, S., Appl. Phys. Lett. 68 (1996) 976.Google Scholar
[6] Akasaka, T., Kobayashi, Y., Ando, S., Kobayashi, N. and Kumagai, M., J. Cryst. Growth 189/190 (1998) 72.Google Scholar
[7] Wang, J., Nozaki, M., Ishikawa, Y., Lachab, M., Fareed, R. S. Qhalid, Wang, T. and Sakai, S., Inst. Phys. Conf. Ser. 162 (1999) 829.Google Scholar
[8] Usui, A., Sunakawa, H., Sakai, A. and Yamaguchi, A.: Jpn. J. Appl. Phys. 36 (1997) L899. First idea was proposed by T. Nishinaga, T. Nakano and S. Zhang: Jpn. J. Appl. Phys. 27, L964 (1988).Google Scholar
[9] Nam, O. H., Bremser, M. D., Zheleva, T. S. and Davis, R. F.: Appl. Phys. Lett. 71 (1997) 2638.Google Scholar
[10] Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., Sugimoto, Y., Kozaki, T., Umemoto, H., Sano, M. and Chocho, K., Jpn. J. Appl. Phys. 36 (1997) L1568.Google Scholar
[11] Parish, G., Keller, S., Kozodoy, P., Ibbetson, J. P., Marchand, H., Fini, P. T., Fleischer, S. B., DenBaars, S. P. and Mishra, U. K., Appl. Phys. Lett. 75 (1999) 247.Google Scholar
[12] Zheleva, T. S., Smith, S. A., Thomson, D. B., Gehrke, T., Linthicum, K. J., Rajagopal, P., Carlson, E., Ashmawi, W. M. and Davis, R. F., Mat. Res. Soc. Symp. Proc. 537 (1999) G3.38.Google Scholar
[13] Kawaguchi, Y., Nambu, S., Sone, H., Shibata, T., Matsushima, H., Yamaguchi, M., Miyake, H., Hiramatsu, K. and Sawaki, N., Jpn. J. Appl. Phys. 37 (1998) L845.Google Scholar
[14] Sone, H., Nambu, S., Kawaguchi, Y., Yamaguchi, M., Miyake, H., Hiramatsu, K., Iyechika, Y., Maeda, T. and Sawaki, N., Jpn. J. Appl. Phys. 38 (1999) L356.Google Scholar
[15] Iwaya, M., Takeuchi, T., Yamaguchi, S., Wetzel, C., Amano, H. and Akasaki, I., Jpn. J. Appl. Phys. 37 (1998) L316.Google Scholar
[16] Hiramatsu, K., Nishiyama, K., Motogaito, A., Miyake, H., Iyechika, Y. and Maeda, T., Phys. Stat. Sol. (a) 176 (1999) 535.Google Scholar
[17] Beaumont, B., Bousquet, V. Vennéguès, P., Vaille, M., Bouillé, A., Gibart, P., Dassonneville, S., Amokrane, A. and Sieber, B., Phys. Stat. Sol. (a) 176 (1999) 567.Google Scholar
[18] Nam, O. H., Zheleva, T. S., Bremser, M. D., Thomson, D. B. and Davis, R. F., Mat. Res. Soc. Symp. Proc. 482 (1998) 301.Google Scholar
[19] Kapolnek, D., Keller, S., Vetury, R., Underwood, R. D., Kozodoy, P., DenBaars, S. P. and Mishra, U. K., Appl. Phys. Lett. 71 (1997) 1204.Google Scholar
[20] Park, J., Grudowski, P. A., Eitting, C. J. and Dupuis, R. D., Appl. Phys. Lett. 73 (1998) 333.Google Scholar
[21] Coltrin, M. E., William, C. C., Bartram, M. E., Han, J., Missert, N., Crawford, M. H. and Baca, A. G., Mat. Res. Soc. Symp. Proc. 537 (1999) G6.9.Google Scholar
[22] Zhang, R., Zhang, L., Hansen, D. M., Boleslawski, M. P., Chen, K. L., Lu, D. Q., Shen, B., Zheng, Y. D. and Kuech, T. F., Mat. Res. Soc. Symp. Proc. 537 (1999) G4.7.Google Scholar
[23] Marchand, H., Ibbetson, J. P., Fini, P. T., Wu, X. H., Keller, S., DenBaars, S. P., Speck, J. S. and Mishra, U. K., Mat. Res. Soc. Symp. Proc. 537 (1999) G4.5.Google Scholar
[24] Miyake, H., Motogaito, A. and Hiramatsu, K., Jpn. J. Appl. Phys. 38 (1999) L1000.Google Scholar
[25] Tadatomo, K., Ohuchi, Y., Okagawa, H., Itoh, H., Miyake, H. and Hiramatsu, K., Mat. Res. Soc. Symp. Proc. 537 (1999) G3.1.Google Scholar
[26] Kawaguchi, Y., Nambu, S., Yamaguchi, M., Sawaki, N., Miyake, H., Hiramatsu, K., Tsukamoto, K., Kuwano, N. and Oki, K., Phys. Stat. Sol. (a) 176 (1999) 561.Google Scholar
[27] Beaumont, B., Haffouz, S. and Gibert, P., Appl. Phys. Lett. 72 (1998) 921.Google Scholar
[28] Kung, P., Walker, D., Hamilton, M., Diaz, J. and Razeghi, M., Appl. Phys. Lett. 74 (1999) 570.Google Scholar
[29] Kawaguchi, Y., Honda, Y., Yamaguchi, M., Sawaki, N. and Hiramatsu, K., Phys. Stat. Sol. (a) 176 (1999) 553.Google Scholar
[30] Miyake, H., Motogaito, A. and Hiramatsu, K.: Jpn. J. Appl. Phys. 38 (1999) L1000.Google Scholar
[31] Hiramatsu, K., Nishiyama, K., Motogaito, A., Miyake, H., Iyechika, Y. and Maeda, T., Phys. Stat. Sol. (a) 176 (1999) 535.Google Scholar
[32] Hiramatsu, K., Nishiyama, K., Mizutani, H., Narukawa, M., Motogaito, A., Miyake, H., Iyechika, Y. and Maeda, T., J. Crystal Growth, 221, 316 (2000).Google Scholar
[33] Hiramatsu, K., Kawaguchi, Y., Shimizu, M., Sawaki, N., Zheleva, T. S., Davis, R. F., Tsuda, H., Taki, W., Kuwano, N. and Oki, K., MRS Internnet J. Nitride Semicond. Res. 2 (1999) 6.Google Scholar
[34] Kawaguchi, Y., Shimizu, M., Yamaguchi, M., Hiramatsu, K., Sawaki, N., Taki, W., Tsuda, H., Kuwano, N., Oki, K., and, T. Zheleva Davis, R. F., J. Cryst. Growth 189/190 (1998) 24.Google Scholar
[35] Kagawa, K., Horibuchi, K., , Kuwano, Oki, K. and Hiramatsu, K.: in Proc. of IWN 2000, IPAP Conf. Series1, 471 (2000).Google Scholar
[36] Sakai, A., Sunakawa, H., and Usui, A., Appl. Phys. Lett. 71 (1997) 2259.Google Scholar
[37] Hiramatsu, K., Kitamura, S. and Sawaki, N., Mat. Res. Soc. Symp. Proc. 395 (1996) 267.Google Scholar