Skip to main content Accessibility help
×
Home

Revealing the electronic band structure of quasi-free trilayer graphene on SiC(0001)

  • C. Coletti (a1) (a2), S. Forti (a2), A. Principi (a3), K.V. Emtsev (a2), A.A. Zakharov (a4), K.M. Daniels (a5), B.K. Daas (a5), M.V.S. Chandrashekhar (a5), A.H. MacDonald (a6), M. Polini (a3) and U. Starke (a2)...

Abstract

Recently, much attention has been devoted to trilayer graphene because it displays stacking and electric field dependent electronic properties well-suited for electronic and photonic applications [1-8]. Several theoretical studies have predicted the electronic dispersion of Bernal (ABA) and rhombohedral (ABC) stacked trilayers. However, a direct experimental visualization of a well-resolved band structure has not yet been reported. In this work, we obtain large area highly homogenous quasi-free trilayer graphene (TLG) on 6H-SiC(0001) and measure its electronic bands via angle resolved photoemission spectroscopy (ARPES). We demonstrate by low energy electron microscopy measurements that that trilayer domains on SiC extend over areas of tens of square micrometers. By fitting tight-binding bands to the experimental data we extract the interatomic hopping parameters for Bernal and rhombohedral stacked trilayers. For ABC stacks and in the presence of an electrostatic asymmetry, we detect the existence of a band-gap of about 120 meV. Notably our results suggest that on SiC substrates the occurrence of ABC-stacked TLG is significantly higher than in natural bulk graphite. Hence, growing TLG on SiC might be the answer to the challenge of controllably synthesizing ABC-stacked trilayer – an ideal material for the fabrication of a new class of gap-tunable devices.

Copyright

Corresponding author

References

Hide All
[1] Min, H., and MacDonald, A. H., Prog. Theor. Phys. Suppl. 176, 227 (2008).
[2] Zhang, F., Sahu, B., Min, H. and MacDonald, A. H., Phys. Rev. B 82, 035409 (2010).
[3] Koshino, M., Phys. Rev. B 81, 125304 (2010).
[4] Craciun, M. F. et al. ., Nature Nanotechn. 4, 383388 (2009).
[5] Lui, C. H., Li, Z., Mak, K. F., Cappelluti, E., and Heinz, T. F., Nature Phys. 7, 944947 (2011).
[6] Bao, W. et al. ., Nature Phys. 7, 948952 (2011).
[7] Zhang, L., Zhang, Y., Camacho, J., Khodas, M., and Zaliznyak, I., Nature Phys. 7, 953957 (2011).
[8] Yacoby, A., Nature Phys. 7, 925926 (2011).
[9] Guinea, F., Castro Neto, A. H., and Peres, N. M. R., Phys. Rev. B 73, 245426 (2006).
[10] Aoki, M., and Amawashi, H., Solid State Communications 142, 123127 (2007).
[11] Grüneis, A. et al. ., Phys. Rev. B 78, 205425 (2008).
[12] Koshino, M., and McCann, E., Phys. Rev. B 80, 165409 (2009).
[13] Avetisyan, A. A., Partoens, B., and Peeters, F. M., Phys. Rev. B 81, 115432 (2010).
[14] Lipson, H., and Stokes, A. R., Proc. R. Soc. A 101, 181 (1942).
[15] Lui, C. H., Li, Z., Chen, Z., Klimov, P. V., Brus, L. E., and Heinz, T. F., Nano Lett. 11, 164169 (2011).
[16] Ohta, T. et al. ., Phys. Rev. Lett. 98, 206802 (2007).
[17] Riedl, C., Coletti, C., Iwasaki, T., Zakharov, A. A., Starke, U., Phys. Rev. Lett. 103, 246804 (2009).
[18] Coletti, C., Forti, S., Principi, A., Emtsev, K.V., Zakharov, A.A., Daniels, K.M., Daas, B.K., Chandrashekhar, M.V.S., Ouisse, T., Chaussende, D., MacDonald, A. H., Polini, M., and Starke, U., ,Phys. Rev. B 88, 155439 (2013).
[19] Daas, B. K., Daniels, K. M., Sudarshan, T. S., and Chandrashekhar, M. V. S., J. Appl. Phys. 110, 113114, (2011).
[20] Emtsev, K. V., Speck, F., Seyller, T., Ley, L., and Riley, J. D., Phys. Rev. B 77, 155303 (2008).
[21] McCann, E., and Fal’ko, V. I., Phys. Rev. Lett. 96, 086805 (2006).
[22] Starke, U., Forti, S., Emtsev, K.V., and Coletti, C., MRS Bulletin 37(12), pp. 11771186 (2012).
[23] Ohta, T., Bostwick, A., Seyller, T., Horn, K., and Rotenberg, E., Science 313, 951 (2006).
[24] Coletti, C., Riedl, C., Lee, D. S., Krauss, B., von Klitzing, K., Smet, J., and Starke, U., Phys. Rev. B 81, 235401 (2010).
[25] Forti, S., Emtsev, K. V., Coletti, C., Zakharov, A. A., and Starke, U., Phys. Rev. B 84, 125449 (2011).
[26] Seyller, T., J. Phys.: Condens. Matter 16, S1755 (2004).
[27] Coletti, C., Frewin, C.L., Hoff, A.M., and Saddow, S.E., Electrochemical and Solid-State Letters 11(10), H285H287 (2008).
[28] Coletti, C., Forti, S., Emtsev, K. V., and Starke, U., GraphITA 2011: Selected papers from the Workshop on Fundamentals and Applications of Graphene, Carbon Nanostructures, pp. 3949, Springer Berlin Heidelberg (2012).
[29] Goler, S. et al. ., Carbon 51, 249254 (2013).
[30] Riedl, C., Coletti, C., and Starke, U., J. Phys. D: Appl. Phys. 43 374009 (2010).
[31] Ristein, J., Mammadov, S., and Seyller, T., Phys. Rev. Lett. 108, 246104 (2012).
[32] Mucha-Kruczyński, M., Tsyplyatyev, O., Grishin, A., McCann, E., Fal’ko, V. I., Bostwick, A., and Rotenberg, E., Phys. Rev. B 77, 195403 (2008).
[33] Norimatsu, W., and Kusunoki, M., Phys. Rev. B 81, 161410 (2010).
[34] Malard, L. M., Nilsson, J., Elias, D. C., Brant, J. C., Plentz, F., Alves, E. S., Castro Neto, A. H., and Pimenta, M. A., Phys. Rev. B 76, 201401(R) (2007).
[35] Coletti, C., Emtsev, K. V., Zakharov, A. A., Ouisse, T., Chaussende, D., and Starke, U., Appl. Phys. Lett. 99, 081904 (2011).5

Keywords

Revealing the electronic band structure of quasi-free trilayer graphene on SiC(0001)

  • C. Coletti (a1) (a2), S. Forti (a2), A. Principi (a3), K.V. Emtsev (a2), A.A. Zakharov (a4), K.M. Daniels (a5), B.K. Daas (a5), M.V.S. Chandrashekhar (a5), A.H. MacDonald (a6), M. Polini (a3) and U. Starke (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed