Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-19T19:06:22.161Z Has data issue: false hasContentIssue false

Resonant Soft X-Ray Fluorescence Studies of Novel Materials

Published online by Cambridge University Press:  15 February 2011

J. A. Carlisle
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550
E. L. Shirley
Affiliation:
National Institute of Standards and Technology, Gaithersburg, MD 20899
L. J. Terminello
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550
E. A. Hudson
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550
J. J. Jia
Affiliation:
University of Tennessee, Knoxville, TN 37996
T A. Callcott
Affiliation:
University of Tennessee, Knoxville, TN 37996
F. J. Himpsel
Affiliation:
IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, NY 10598
D. L. Ederer
Affiliation:
Tulane University, New Orleans, LA, 70118
R. C. C. Perera
Affiliation:
Lawrence Berkeley Laboratory, Berkeley, CA 74720
Get access

Abstract

We are using resonant soft x-ray fluorescence at the Advanced Light Source to probe the electronic and geometric structure of novel materials. In the resonant process, a core electron is excited by a photon whose energy is near the core binding energy. In this energy regime the absorption and emission processes are coupled, and this coupling manifests itself in several ways. In boron nitride (BN), the resonant emission spectra reflect the influence of a “spectator” electron in an unoccupied excitonic state. The resonant emission can be used to distinguish between the various bulk phases of BN, and can also be used to probe the electronic structure of a monolayer of BN buried in a bulk environment, where it is inaccessible to electron spectroscopies. For highly-oriented pyrolytic graphite (HOPG) a coherent absorption-emission process takes place in the resonant regime, whereby crystalline momentum is conserved between the core excited electron and the valence hole which remains after emission

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Ederer, D. L., Callcott, T. A., and Perera, R. C. C., Synchrotron Radiation News 7, 29 (1994).Google Scholar
[2] Rubensson, J-E., Mueller, D., Shuker, R., Ederer, D. L., Zhang, C. H., Jia, J., and Callcott, T. A., Phys. Rev. Lett. 64, 1047 (1990).Google Scholar
[3] Carlisle, J. A., Shirley, E. L., Hudson, E. A., Terminello, L. J., Callcott, T. A., Jia, J. J., Ederer, D. L., Perera, R. C. C., and Himpsel, F. J., Phys. Rev. Lett. (in press).Google Scholar
[4] Miyano, K. E., Ederer, D. L., Callcott, T. A., O'Brien, W. L., Jia, J. J., Zhou, L., Dong, Q.-Y., Ma, Y., Woicik, J. C., and Mueller, D. R., Phys. Rev. B 48, 1918 (1993).Google Scholar
[5] Ma, Y., Wasshahl, N., Skytt, P., Guo, J., NØrdgren, J., Johnson, P. D., Rubensson, J-E., Boske, T., Eberhardt, W., and Kevan, S. D., Phys. Rev. Lett. 69, 2598 (1993).Google Scholar
[6] Chaiken, A., Terminello, L. J., Wong, J., Doll, G. L., and Taylor, C. A. II, Appl. Phys. Lett. 63, 2112 (1993).Google Scholar
[7] Johnson, P. D., Ma, Y., Phys. Rev. B 49, 5024 (1994).Google Scholar
[8] Zhu, X. and Louie, S. G., unpublished; see also McGovern, I. T., Eberhardt, W., Plummer, E. W., and Fischer, J. E., Physica 99B, 415 (1980), and R. F. Willis, B. Feuerbacker, and B. Fitton, Phys. Rev. B 4, 2441 (1971).Google Scholar