Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T14:56:02.122Z Has data issue: false hasContentIssue false

Residual Stress, Mechanical Behavior and Electrical Properties of Cu/Nb Thin-Film Multilayers

Published online by Cambridge University Press:  15 February 2011

A. J. Griffin JR.
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545
J. D. Embury
Affiliation:
McMaster University, Ontario, Canada
M. F. Hundley
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545
T. R. Jervis
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545
H. H. Kung
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545
W. K. Scarborough
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545
K. C. Walter
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545
J. Wood
Affiliation:
McMaster University, Ontario, Canada
M. Nastasi
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545
Get access

Abstract

The effect of compositional wavelength on the residual stress, electrical resistivities and mechanical properties of Cu/Nb thin-film multilayers sputtered onto single-crystal Si substrates was evaluated. Electrical resistivities were measured down to 4 °K using a standard four-point probe measurement system. A differential specimen-curvature technique was used to detennine residual stress, and a mechanical-properties microprobe was employed to obtain hardness and elastic modulus. Characterization techniques included profilometry, Ion-Beam Analysis (IBA) and Transmission Electron Microscopy (TEM). The hardness of the Cu-Nb multilayers increased with decreasing compositional wavelength so that the layered structures had hardness values in excess of either of the constituents and the hardness predicted by the rule of mixtures. A peak in the net residual compressive stress of the multilayers was observed at a compositional wavelength of 100 nm. No resistivity plateau was observed within the composition wavelength range studied.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Verhoeven, J. D., Downing, H. L., Chumbley, L. S. and Gibson, E. D., J. Appl. Phys., 65, 1293 (1989).Google Scholar
2. Chiang, K. T., Kallenborn, K. J., Yuen, J. L. and Paton, N. E., Mater. Sci. and Eng., A 156, 85 (1992).Google Scholar
3. Liu, P., Bahadur, S. and Verhoeven, J. D., Wear, 166, 133 (1993).Google Scholar
4. Foner, S., McNiff, E. J. Jr., Schwartz, B. B. and Roberge, R., Appl. Phys. Lett., 31, 853 (1977).Google Scholar
5. Harbison, J. P. and Bevk, J., J. Appl. Phys., 48, 5180 (1977).Google Scholar
6. Krotz, P. D., Flint, J. A., Yuen, J. L. and Paton, N. E., Mater. Sci. and Eng., A149, 225 (1992).Google Scholar
7. Koehler, J. S., Phys. Rev. B, 2, 547 (1970).Google Scholar
8. Lehoczky, S. L., J. App1. Phys., 49, 5479 (1978).Google Scholar
9. Zheng, G., Kitaoka, Y., Oda, Y., Kohori, Y., Asayama, K., Obi, Y., Fujimori, H. and Aoki, R., Physica B, 165&166 481 (1990).Google Scholar
10. Zhang, X., Xia, H. and Hu, A., Phys. Stat. Sol. B, 155, 137 (1989).Google Scholar
11. Handbook of Modem Ion Beam Analysis, edited by Tesmer, J. R. and Nastasi, M., (MRS, Pittsburgh, in press).Google Scholar
12. Nix, W. D., Met. Trans., 20A, 2217 (1989).Google Scholar
13. Volkert, C. A., J. Appl. Phys., 70, 3521 (1991).Google Scholar
14. Stoney, G. G., Proc. Roy. Soc. (London), A82, 172 (1909).Google Scholar
15. Doolittle, L. R., Ph.D. Thesis (Cornell University, Ithaca, New York, 1987).Google Scholar
16. Windischmann, H., J. Vac. Sci. Technol., A9, 2431 (1991).Google Scholar
17. Baker, S. P. and Nix, W. D., J. Mater. Res., 9, 3145 (1994).Google Scholar
18. Skomski, R., Enrech, M. and Coey, J. M. D., Nanostruct. Mater., 1, 337 (1992).Google Scholar