Hostname: page-component-7bb8b95d7b-l4ctd Total loading time: 0 Render date: 2024-09-11T22:06:52.833Z Has data issue: false hasContentIssue false

Reorientational Motion and Phase Transitions of Cyclohexane in Restricted Geometries

Published online by Cambridge University Press:  21 February 2011

T. W. Zerda
Affiliation:
Texas Christian University, Physics Department, P. O. Box 32915, Fort Worth, TX 76129
Yong Shao
Affiliation:
Texas Christian University, Physics Department, P. O. Box 32915, Fort Worth, TX 76129
Get access

Abstract

Rotational motion of cyclohexane in the liquid and the solid plastic phase is studied using Raman light scattering. The results are compared with molecular dynamics simulations run for model pores of diameters similar to those used in the experiment. The presence of the surface layer and its effect on the relaxation times is discussed. The temperature of the solid-solid phase transition is determined from the analysis of the ν21 band shape. It is shown that the depression of the cubic to monoclinic phase transition depends on the pore diameter and is different for modified and unmodified surfaces. It is suggested that molecules near the pore walls form the amorphous structure and only molecules near the center of the pore form crystallographic structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Mu, R., Malhotra, V. M., Phys. Rev. B 44, 4602 (1991)Google Scholar
2 Jackson, C. L., McKenna, G. B., J. Chem. Phys. 93, 9002 (1990)Google Scholar
3 Dore, J. C., Dunn, M., Hasebe, T., Strange, J. H., Coll. Surf. 36, 199 (1989)Google Scholar
4 Brodka, A., Zerda, T. W., J. Chem. Phys. 97, 5676 (1992)Google Scholar
5 Ruhrer, U., Falge, H. J., Brandmuller, J., J. Raman Spectrosc. 7, 15 (1978)Google Scholar
6 Seiesinska, E., Seiesinski, J., Wasiutynski, T., Godlewska, M., Wurflinger, A., J. Molec. Struct., 267, 235(1992)Google Scholar
7 Crain, J., Poon, W. C. K., Crains-Smith, A., Hatten, P. D., J. Phys. Chem. 96, 8168 (1992)Google Scholar
8 Haines, J., Gilson, D. F. R., J. Phys. Chem. 93, 7920 (1989)Google Scholar
9 Bartoli, F. J., Litovitz, T. A., J. Chem. Phys. 56, 404 and 413 (1972)Google Scholar
10 Bien, T., Doge, G., J. Raman Spectrosc. 12, 82 (1982)Google Scholar
11 Ma, W-J., Banavar, J. R. and Koplik, J., J. Chem. Phys. 97, 485 (1992)Google Scholar
12 Zerda, T. W., in Chemical Processing of Advanced Materials, eds Hench, L. L. and West, J. (J. Wiley, New York, 1991)Google Scholar
13 Zerda, T. W., Brodka, A., Coffer, J., J. Non Crystal. Sol. 168, 33 (1994)Google Scholar