Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-08T20:18:01.413Z Has data issue: false hasContentIssue false

Reliable Metallization For InP-Based Devices and Oeic’s

Published online by Cambridge University Press:  25 February 2011

O. Wada
Affiliation:
Fujitsu Laboratories Ltd., 10-1 Morinosato-Wakamiya, Atsugi 243-01, Japan
O. Ueda
Affiliation:
Fujitsu Laboratories Ltd., 10-1 Morinosato-Wakamiya, Atsugi 243-01, Japan
Get access

Abstract

We describe techniques of reliable metallization in InP-based systems for application to discrete and opto-electronic integrated circuits (OEIC’s). Strong metallurgical interaction between Au and InP-based compounds can cause serious contact degradation in light emitting diodes (LED’s). By analyzing this interaction in detail, an improved thin Au/Zn/Au p-contact technique has been developed. The results are compared with Pt/Ti contacts, and it has shown that both provide sufficient reliability under temperature and current stresses in LED’s. We then describe a metallization technique for flip-chip bonding of opto-electronic devices on other semiconductor chips for OEIC applications. An acceptable reaction barrier effect of Pt in AuSn/Pt/Ti metallization structure has been demonstrated and this structure has been used for a high-reliability, flip-chip integrated GalnAs/InP PIN photodiode/GaAs amplifier receiver circuit. We also discuss requirements for metallization for future monolithic OEIC’s by taking up an example of metal-semiconductor-metal photodiodes in InP-based systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wada, O., Sakurai, T., and Nakagami, T., IEEE J. Quantum Electron. OE–22, 805 (1986)CrossRefGoogle Scholar
2. Keramidas, V. G., Temkin, H., and Mahajan, S., Proc. Int. Symp. on GaAs and Related compounds, Vienna, 1980, Inst. Phys. Conf. Ser. 56, 293 (1981).Google Scholar
3. Wada, O., J. Appl. Phys. 57 1901 (1985).CrossRefGoogle Scholar
4. Yamakoshi, S., Abe, M., Wada, O., Komiya, S., and Sakurai, T., IEEE J. Quantum Electron. QE–17, 167 (1981).CrossRefGoogle Scholar
5. Wada, O., Yamakoshi, S., Hamaguchi, H., Sanada, T., Nishitani, Y., and Sakurai, T., IEEE J. Quantum Electron. OE–18, 368 (1982).CrossRefGoogle Scholar
6. Ueda, O., Yamakoshi, S., Sanada, T., Umebu, I., and Kotani, T., J. Appl. Phys. 53, 7385 (1972).Google Scholar
7. Chin, A. K., Zipfel, C. S., Ermanis, F., Marchut, L., Camlibel, I., DiGiuseppe, M. A., and Chin, B. R., IEEE Trans. Electron Devices ED–30. 304 (1983).CrossRefGoogle Scholar
8. Ueda, O., Imai, H., Yamaguchi, A., Komiya, S., Umebu, I., and Kotani, T., J. Appl. Phys. 55, 665 (1984).CrossRefGoogle Scholar
9. Wada, O., Sanada, T., Yamakoshi, S., Abe, M., and Sakurai, T. (unpublished).Google Scholar
10. Ueda, O., Yamakoshi, S., Sanada, T., Umebu, I., Kotani, T., and Hasegawa, O., J. Appl. Phys. 53, 9170 (1982).CrossRefGoogle Scholar
11. Braslau, N., J. Vac. Sci. Technol. 19, 803 (1981).CrossRefGoogle Scholar
12. Wada, O., Nobuhara, H., Sanada, T., Kuno, M., Fujii, T., and Sakurai, T., IEEE J. Lightwave Technol. LT–7, 186(1989).CrossRefGoogle Scholar
13. Crow, J. D., Tech. Dig. IOOC’89, Kobe, p. 86.Google Scholar
14. Suzuki, N., Furuyama, H., Hirayama, Y., Morinaga, M., Eguchi, K., Fushibe, M., Funamizu, M., and Nakamura, M., Electron. Lett. 24, 467 (1988).CrossRefGoogle Scholar
15. Hamaguchi, , Makiuchi, M., Kumai, T., Aoki, O., and Wada, O., Tech. Dig. 2nd OEC ’88, paper 4C2-3.Google Scholar
16. Crow, J. D., Tech. Dig. Optical Fiber Communication (OFC) 1989, p. 83.Google Scholar
17. Fujii, T., Nakata, Y., Sugiyama, Y., and Hiyamizu, S., Jpn. J. Appl. Phys. 25, L254 (1986).CrossRefGoogle Scholar
18. Forest, S. R., Kim, O. K., and Smith, R. G., Appl. Phys. Lettt. 41, 95 (1982).CrossRefGoogle Scholar