Skip to main content Accessibility help
×
Home

Reliability and Degradation Mechanisms in High Power Broad-Area InGaAs-AlGaAs Strained Quantum Well Lasers

  • Yongkun Sin (a1), Nathan Presser (a1), Stephen LaLumondiere (a1), Miles Brodie (a1), Zachary Lingley (a1), Neil Ives (a1), Brendan Foran (a1), William Lotshaw (a1) and Steven C. Moss (a1)...

Abstract

Reliability and degradation processes in broad-area InGaAs-AlGaAs strained quantum well (QW) lasers are under intensive investigation because these lasers are the key components for fiber lasers and amplifiers that have found both industrial and military applications in recent years. Unlike single-mode lasers that were developed for high reliability telecom applications, broad-area lasers were mainly targeted for applications that require less stringent reliability of the lasers until recently. Especially, the lack of field reliability data is a concern for satellite communication systems where high reliability is required of lasers for long-term duration. For our present study, we addressed this concern by performing long-term life-tests of broad-area InGaAs-AlGaAs strained QW lasers and also by studying mechanisms that are responsible for catastrophic degradation of the lasers.

Copyright

References

Hide All
[1] Rossin, V., Zucker, E., Peters, M., Everett, M., and Acklin, B., “High-power high-efficiency 910-980nm broad area laser diodes,” Proc. SPIE 5336, pp.196202, 2004.
[2] Schmidt, B., Sverdlov, B., Pawlik, S., Lichtenstein, N., Müller, J., Valk, B., Baettig, R., Mayer, B., and Harder, C., “9xx high-power broad area laser diodes,Proc. SPIE 5711, pp. 201208, 2005.
[3] Sin, Y., Presser, N., Foran, B., Ives, N., and Moss, S. C., "Catastrophic facet and bulk degradation in high power multi-mode InGaAs strained quantum well single emitters”, Proc. SPIE 7198 (High-Power Diode Laser Technology and Applications VII), 719818, pp.112, 2009.
[4] Sin, Y., Presser, N., Foran, B., and Moss, S. C., "Investigation of catastrophic degradation in high power multi-mode InGaAs strained quantum well single emitters", Proc. SPIE 6876, High Power Diode Laser Technology & Applications VI, p.68760R-168760R-12, 2008.
[5] Sin, Y., Ives, N., Presser, N., and Moss, S. C., "Root cause investigation of catastrophic degradation in high power multi-mode InGaAs-AlGaAs strained quantum well lasers", Proc. of SPIE 7583 (High-Power Diode Laser Technology and Applications VIII), 758307, pp. 758307-1758307-12, 2010.
[6] Sin, Y., Ives, N., LaLumondiere, S., Presser, N., and Moss, S. C., "Catastrophic optical bulk damage (COBD) in high power multi-mode InGaAs-AlGaAs strained quantum well lasers", Proc. of SPIE 7918 (High-Power Diode Laser Technology and Applications IX), 791803, pp. 791803-1791803-12, 2011.
[7] Kimerling, L. C., “Recombination enhanced defect reactions,” Solid State Electron.38, pp. 13911401, 1978.

Keywords

Reliability and Degradation Mechanisms in High Power Broad-Area InGaAs-AlGaAs Strained Quantum Well Lasers

  • Yongkun Sin (a1), Nathan Presser (a1), Stephen LaLumondiere (a1), Miles Brodie (a1), Zachary Lingley (a1), Neil Ives (a1), Brendan Foran (a1), William Lotshaw (a1) and Steven C. Moss (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed