Skip to main content Accessibility help
×
Home

Relaxation Processes at High Temperature in TiAl-Nb-Mo Intermetallics

  • Pablo Simas (a1), Thomas Schmoelzer (a2), Svea Mayer (a2), Maria L. Nó (a3), Helmut Clemens (a2) and Jose San Juan (a1)...

Abstract

In the last decades there was a growing interest in developing new light-weight intermetallic alloys, which are able to substitute the heavy superalloys at a certain temperature range. At present a new Ti-Al-Nb-Mo family, called TNM™ alloys, is being optimized to fulfill the challenging requirements. The aim of the present work was to study the microscopic mechanisms of defect mobility at high temperature in TNM alloys in order to contribute to the understanding of their influence on the mechanical properties and hence to promote the further optimization of these alloys. Mechanical spectroscopy has been used to study the internal friction and the dynamic modulus up to 1460 K of a TNM alloy under different thermal treatments. These measurements allow to follow the microstructural evolution during in-situ thermal treatments. A relaxation process has been observed at about 1050 K and was characterized as a function of temperature and frequency in order to obtain the activation parameters of the responsible mechanism. In particular, the activation enthalpy has been determined to be H= 3 eV. The results are discussed and an atomic mechanism is proposed to explain the observed relaxation process.

Copyright

References

Hide All
1. Gamma Titanium Alumindes 1999, edited by Kim, Y.W., Dimiduk, D.M., and Loretto, M.H. (TMS, Warrendale, PA, 1999).
2. Titanium and Titanium alloys, edited by Leyens, C., Peters, M. (Wiley-VCH, Weinheim, Germany, 2003).
3. Gamma Titanium Alumindes 2003, edited by Kim, Y.W., Clemens, H. and Rosemberg, A.H. (TMS, Warrendale, PA, 2003).
4. Appel, F. and Wagner, R., Mater. Sci. Eng. R 22, 187 (1998).
5. Kestler, H. and Clemens, H., in Ref. (2), (2003), p 351–392.
6. Clemens, H., Wallgram, W., Kremmer, S., Güther, V., Otto, A. and Bartels, A., Adv. Eng. Mater. 10, 707 (2008).
7. Appel, F. and Oehring, M., in Ref. (2), (2003) p 89–152.
8. Herzig, C., Przeorski, T., Friesel, M., Hisker, F. and Divinski, S., Intermetallics 9, 461 (2001).
9. Takeyama, M. and Kobayashi, S., Intermetallics 13, 989 (2005).
10. Imayev, R.M., Imayev, V.M., Oehring, M. and Appel, F., Intermetallics 15, 451 (2007).
11. Zhang, Z., Leonard, K.J., Dimiduk, D.M. and Vasudevan, V.K., Structural Intermetallics 2001. (TMS, Warrendale, PA, 2001) p. 515.
12. Kim, Y.W. and Dimiduk, D.M., Structural Intermetallics 2001. (TMS, Warrendale, PA, 2001) p. 625.
13. Clemens, H., Boeck, B., Wallgram, W., Schmoelzer, T., Droessler, L.M., Zickler, G.A., Leitner, H. and Otto, A., (Mater. Res. Soc. Symp. Proc. Volume 1128, Warrendale, PA, 2009) p.115.
14. Watson, I.J., Liss, K.D., Clemens, H., Wallgram, W., Schmoelzer, T., Hansen, T.C. and Reid, M., Adv. Eng. Mater. 11, 932 (2009).
15. Clemens, H., Chladil, H.F., Wallgram, W., Zickler, G.A., Gerlig, R., Liss, K.D., Kemmer, S., Güther, V. and Smarsly, W., Intermetallics 16, 827 (2008).
16. Droessler, L.M., Schmoelzer, T., Wallgram, W., Cha, L., Das, G. and Clemens, H., (Mater. Res. Soc. Symp. Proc. Volume 1128, Warrendale, PA, 2009) p. U03–08.
17. Schmoelzer, T., Liss, K.D., Zickler, G.A., Watson, I.J., Droessler, L.M., Wallgram, W., Buslaps, T., Studer, A. and Clemens, H., Intermetallics 18, 1544 (2010).
18. Nowick, A.S. and Berry, B.S., Anelastic Relaxation in Crystalline Solids. (Academic Press, New York, 1972).
19. Mechanical Spectroscopy Q-1 2001, edited by Schaller, R., Fantozzi, G. and Gremaud, G. G. (Trans Tech Publications, Uetikon-Zuerich (SW), 2001).
20. San Juan, J., Mater. Sci. Forum 366-368, 32 (2001).10.4028/www.scientific.net/MSF.366-368.32
21. Güther, V., Otto, J., Klose, J., Rothe, C., Clemens, H., Kachler, W., Winter, S. and Kremmer, S., Structural Intermetallics for Elevated Temperature Applications, edited by Kim, Y.W., Morris, D., Yang, R. and Leyens, C.. (TMS, Warrendale, PA, 2008), p. 249.
22. Güther, V., Rothe, C., Vinter, S. and Clemens, H., BHM 155, 325 (2010).
23. Simas, P., San Juan, J., Schaller, R. and , M. L., Key. Eng. Mat. 423, 89 (2009).
24. Simas, P., PhD Thesis, University of the Basque Country, (2012).
25. Cha, L., Schmoelzer, T., Zhang, Z., Mayer, S., Clemens, H., Staron, P. and Dehm, G., Adv. Eng. Mater. 14, 299 (2012).
26. San Juan, J., Simas, P., Schmoelzer, T., Mayer, S., Clemens, H. and , M.L., to be published.
27. Simas, P., Schmoelzer, T., , M.L., Clemens, H. and San Juan, J., (Mater. Res. Soc. Symp. Proc. Volume 1295, Warrendale, PA, 2011), p. 139.
28. Weller, M., Haneczok, G., Kestler, H. and Clemens, H., Mater. Sci. Eng. A 370, 234 (2004).
29. Perez-Bravo, M., , M.L., Madariaga, I., Ostolaza, K. and San Juan, J., in Gamma Titanium Aluminides 2003, edited by Kim, Y.W., Clemens, H. and Rosemberg, A.H.. (TMS, Warrendale, PA, USA, 2003) p 451.
30. Perez-Bravo, M., , M.L., Madariaga, I., Ostolaza, K. and San Juan, J., Mater. Sci. Eng. A 370, 240 (2004).
31. Weller, M., Clemens, H., Haneczok, G., Dehm, G., Bartels, A., Bystrzanowski, S., Gerling, R. and Arzt, E., Phil. Mag. Letters 84, 383 (2004).
32. Weller, M., Clemens, H. and Haneczok, G., Mater. Sci. Eng. A 442, 138 (2006).
33. Wallgram, W., Schmoelzer, T., Cha, L., Das, G., Güther, V., and Clemens, H., Int. J. Mat. Res. 100, 1021 (2009).
34. Rusing, J. and Herzig, C., Intermetallics 4, 647 (1996).
35. Mishin, Y. and Herzig, C., Acta Mater. 48, 589 (2000).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed