Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-19T00:29:11.669Z Has data issue: false hasContentIssue false

Relative Reactivity Trends OP High Temperature Superconductor Phases

Published online by Cambridge University Press:  26 February 2011

David R. Riley
Affiliation:
Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712–1167
Ji-Ping Zhou
Affiliation:
Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712–1167
A. Manthiram
Affiliation:
Center for Materials Science and Engineering, University of Texas at Austin, Austin, Texas 78712–1167
John T. McDevitt
Affiliation:
Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712–1167
Get access

Abstract

Many of the high temperature superconductor phases degrade rapidly when in the presence of water, acids, carbon dioxide or carbon monoxide. In order to foster more rapid developments in the area of high-Tc research, it will be necessary to acquire a more complete understanding of the surface chemistry of these superconducting materials. In this paper, the relative reactivity of the common cuprate phases toward water is reported. X-ray powder diffraction and scanning electron microscopy measurements are utilized here to establish the reactivity trends.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bednorz, J. G. and Müller, K.A., Z. Phys. B-Cond. Matter, 64, 189 (1986).Google Scholar
2. Sheng, Z. Z. and Hermann, A. M., Nature, 332, 138 (1988).Google Scholar
3. Ono, R. H., Goodrich, L. F., Beali, J. A., Johansson, M. E. and Relntsema, C. D.. Appl Phys. Lett., 59, 1205 (1991).Google Scholar
4. McGrinn, P., Chen, W., Zhu, N., Lanagan, M. and Balachandran, U., Appl Phys. Lett., 57, 1455 (1990).Google Scholar
5. Yan, M. F., Barns, R. L., O'Bryan, H. M., Gallagher, P. K. and Sherwood, R. C., Appl Phys. Lett, 51, 532 (1987).Google Scholar
6. Zhou, J. P. and McDevltt, J. T., Chemistry of Materials, accepted.Google Scholar
7. Rosamilia, J. M., Schneemeyer, L. F., Kometani, T. Y., Waszczak, J. V. and Miller, B., J. Electrochem. Soc., 136, 2300 (1989).Google Scholar
8. Rosamilia, J. M., Miller, B., Schneemeyer, L. F., Waszczak, J. V. and O'Bryan, H. M.. J. Electrochem. Soc., 134, 1863 (1987).Google Scholar
9. McDevitt, J. T., McCarley, R. L., Dalton, E. F., Gollmar, R., Murray, R. W., Coliman, J. P., Yee, G. T. and Little, W. A., Chemistry oj High Temperature Superconductors II, eds. Nelson, D. L. and George, T. F., ACS Symposium Series 377, (Washington D.C., 1988) Chapter 17.Google Scholar
10. Liu, H. K., Dou, S. X., Bourdillon, A. J. and Sorrel, A. J., Supercond. Sci. Technol, 1, 194 (1988).Google Scholar
11. Lee, W. K. and Nowick, A. S., J. Mater. Res., 5, 855 (1990).Google Scholar
12. Suzuki, T., Nagoshi, M., Fukuda, Y., Oh-ishi, K., Syono, Y., Tachiki, M., Phys. Rev. B, 42, 4263 (1990).Google Scholar
13. Vasquez, R. P., Gupta, A. and Kussmaul, A., Solid State Commun, 78, 303 (1991).Google Scholar
14. Riley, D. R. and McDevitt, J. T.. J. Electroanal Chem., 295, 373 (1990).Google Scholar
15. Riley, D. R., Manthiram, A. and McDevitt, J. T.. submitted.Google Scholar
16. McDevitt, J. T., Riley, D. R. and Zhou, J. P., National Association of Corrosion Engineers Symposium, San Diego, CA, June 1991, in press.Google Scholar