Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-18T10:54:48.120Z Has data issue: false hasContentIssue false

Reinvestigation of the Incommensurate Structure of αPbO.

Published online by Cambridge University Press:  11 February 2011

Gianguido Baldinozzi
Affiliation:
Structures, propriétés et modélisation des solides, CNRS-Ecole Centrale Paris, Châtenay-Malabry, FRANCE
Jean-Marc Raulot
Affiliation:
Structures, propriétés et modélisation des solides, CNRS-Ecole Centrale Paris, Châtenay-Malabry, FRANCE
Vaclav Petricek
Affiliation:
Structures, propriétés et modélisation des solides, CNRS-Ecole Centrale Paris, Châtenay-Malabry, FRANCE Dept of Physics, Czech Academy of Sciences, Praha, CZECH Republic
Get access

Abstract

Lead monoxide exists at room temperature in two forms, namely α-PbO, litharge (red, tetragonal) and β3-PbO massicot (yellow, orthorhombic). The weak bonds along the c axis and the ferroelastic nature of the incommensurate phase prevent the growth of single crystals suitable for high quality diffraction techniques (very small ferroelastic domains and frequent stacking faults in these layered structures). A structural determination of the incommensurate structure was proposed in the superspace group C2mb(0β;0) using the integrated intensities extracted from powder diffraction patterns. More recently an electron microscopy study suggested the existence of systematic extinctions affecting the satellite reflections and it supports the more symmetric space group Cmma(0β0)s. In this paper, high resolution powder diffraction patterns (synchrotron) were refined in the incommensurate phase using the Rietveld method. Various superspace groups and forms for the modulated displacements were tested. The consequences of this structural model on the electronic structure are analysed using also ab-initio calculations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Boher, P., Gamier, P., C.R. Acad. Sci II 298 203 (1984)Google Scholar
Moreau, J., Kiat, J.M., Gamier, P., Calvarin, G., Phys. Rev. B 39 10296 (1989)Google Scholar
[3] Hédoux, A., Grebille, D. et Gamier, P., Phys. Rev. B 40 10653 (1989).Google Scholar
[4] Withers, R., Schmid, S., J. Sol. St. Chem. 113 272 (1994)Google Scholar
[5] LeBellac, D., Kiat, J.M. et al., Phys. Rev. B 52 13184 (1995)Google Scholar
[6] LeBellac, D., Kiat, J.M., Gamier, P., J. Sol. St. Chem. 114 459 (1995)Google Scholar
[7] Petricek, V., Dusek, M., Jana2000. Structure Determination Software Programs. Institute of Physics, Praha, Czech Republic (2000).Google Scholar
[8] Finger, L.W., Cox, D.E., Jephcoat, A.P., J. Appl. Cryst. 27 892(1994)Google Scholar
[9] Stephens, P.W., J. Appl. Cryst. 32 281 (1999)Google Scholar
[10] Tank, R. W., Jepsen, O., Burkhardt, A. et Andersen, O. K., The Stuttgart TB-LMTO-ASA program (version 47), MPI für Festkörperforschung, Stuttgart, Allemagne (1998).Google Scholar
[11] Becke, A.D. et Edgecombe, K.E., J. Chem. Phys. 92 5397(1990).Google Scholar
[12] Dronskowski, R. et Blöchl, P.E., J. Phys. Chem. 97 8617(1993).Google Scholar