Hostname: page-component-7c8c6479df-24hb2 Total loading time: 0 Render date: 2024-03-28T15:19:24.658Z Has data issue: false hasContentIssue false

Reinforcement from In-Situ Precipitated Silica in Polysiloxane Elastomers under Various Types of Deformation

Published online by Cambridge University Press:  15 February 2011

James E. Mark
Affiliation:
Department of Chemistry and the Polymer Research Center, The University of Cincinnati, Cincinnati, OH 45221-0172
Shuhong Wang
Affiliation:
Department of Chemistry and the Polymer Research Center, The University of Cincinnati, Cincinnati, OH 45221-0172
Ping Xu
Affiliation:
Department of Chemistry and the Polymer Research Center, The University of Cincinnati, Cincinnati, OH 45221-0172
Jianye Wen
Affiliation:
Department of Chemistry and the Polymer Research Center, The University of Cincinnati, Cincinnati, OH 45221-0172
Get access

Abstract

Elastomeric networks prepared by tetrafunctionally end linking hydroxyl-terminated poly(dimethylsiloxane) chains (PDMS) were filled by the in-situ precipitation of silica. The resulting networks were investigated under uniaxial elongation, biaxial extension, shear, and torsion in order to characterize the resulting changes in mechanical properties. Compared with the unfilled networks, the silica-filled materials showed large reinforcing effects. Specifically, their values of the modulus, ultimate strength, and rupture energy increased significantly. The results thus indicate that the PDMS networks filled by the in-situ precipitation of silica have very good mechanical properties in several, rather different deformations. Examples of other deformations of interest are equilibrium swelling, and dynamic cycling for characterization of compression set.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1) Boonstra, B. B. Polymer 1979, 20, 691.Google Scholar
(2) Warrick, E. L.; Pierce, O. R.; Polmanteer, K. E.; Saam, J. C. Rubber Chem. Technol. 1979, 52, 437.Google Scholar
(3) Enikolopyan, N. S.; Fridman, M. L.; Stalnova, I. O.; Popov, V. L. Adv. Polym. Sci. 1990, 96, 1.Google Scholar
(4) Mark, J. E.; Pan, S.-J. Makromol. Chemie, Rapid Comm. 1982, 3, 681.Google Scholar
(5) Mark, J. E. CHEMTECH 1989, 19, 230.Google Scholar
(6) Wilkes, G. L.; Brennan, A. B.; Huang, H.-H.; Rodrigues, D.; Wang, B. In Polymer-Based Molecular Composites; Schaefer, D. W.; Mark, J. E., Ed.; Materials Research Society: Pittsburgh, 1990; Vol.171; p 15.Google Scholar
(7) Schmidt, H. In Polymer-Based Molecular Composites; Schaefer, D. W.; Mark, J. E., Ed.; Materials Research Society: Pittsburgh, 1990; Vol.171; p 3.Google Scholar
(8) Polymer-Based Molecular Composites; Schaefer, D. W.; Mark, J. E., Ed.; Materials Research Society: Pittsburgh, 1990; Vol.171.Google Scholar
(9) Mark, J. E.; Schaefer, D. W. In Polymer-Based Molecular Composites; Schaefer, D. W. and Mark, J. E. Ed.; Materials Research Society: Pittsburgh, 1990; Vol.171; p 51.Google Scholar
(10) Mark, J. E. J. Appl. Polym. Sci., Appl. Polym. Symp. 1992, 50, 273.Google Scholar
(11) Mark, J. E.; Ning, Y.-P.; Jiang, C.-Y.; Tang, M.-Y.; Roth, W. C. Polymer 1985, 26, 2069.Google Scholar
(12) Xu, P.; Wang, S.; Mark, J. E. In Better Ceramics Through Chemistry IV; Zelinski, B. J. J., Brinker, C. J., Clark, D. E., and Ulrich, D. R., Ed.; Materials Research Society: Pittsburgh, 1990.Google Scholar
(13) Mark, J. E. Brit. Polym. J. 1985, 17, 144.Google Scholar
(14) Ning, Y.-P.; Mark, J. E. Polym. Eng. Sci. 1986, 26,167.CrossRefGoogle Scholar
(15) Mark, J. E.; Erman, B. Rubberlike Elasticity. A Molecular Primer;, Wiley-Interscience: New York, 1988.Google Scholar
(16) Boyce, P. H. and Treloar, L. R. G. Polymer 1970, 11, 21.Google Scholar
(17) Wang, S.; Xu, P.; Mark, J. E. Rubber Chem. Technol. 1991, 64, 746.Google Scholar
(18) Mark, J. E.; Sullivan, J. L. J. Chem. Phys. 1977, 66,1006.Google Scholar
(19) Xu, P.; Mark, J. E. Rubber Chem. Technol. 1990, 63, 276.Google Scholar
(20) Gent, A. N.; Kuan, T. H. J. Polym. Sci., Polym. Phys. Ed. 1973, 2, 1723.Google Scholar
(21) Wen, J.; Mark, J. E., unpublished results.Google Scholar
(22) Erman, B.; Mark, J. E. Ann. Rev. Phys. Chem. 1989, 40, 351.Google Scholar
(23) Fitzgerald, J. J.; Wen, J.; Mark, J. E., unpublished results.Google Scholar
(24) Wang, S. Ph. D. in Chemistry, University of Cincinnati 1991.Google Scholar