Hostname: page-component-7bb8b95d7b-w7rtg Total loading time: 0 Render date: 2024-09-26T11:11:55.462Z Has data issue: false hasContentIssue false

Reduction of Sn02 by A-Si1-XGeX

Published online by Cambridge University Press:  25 February 2011

F. Edelman
Affiliation:
1-Department of Materials Engineering, Technion, 32000 Haifa, Israel;
R. Brener
Affiliation:
Solid State Institute, Technion, 32000 Haifa, Israel; Department of Physics, Technion, 32000 Haifa, Israel;
C. Cytermann
Affiliation:
Solid State Institute, Technion, 32000 Haifa, Israel;
M. Eizenberg
Affiliation:
1-Department of Materials Engineering, Technion, 32000 Haifa, Israel; Solid State Institute, Technion, 32000 Haifa, Israel;
R. Weil
Affiliation:
Solid State Institute, Technion, 32000 Haifa, Israel; Department of Physics, Technion, 32000 Haifa, Israel;
W. Beyer
Affiliation:
Institut für Schicht- und Ionentechnik, Forschungszentrum Jülich, D-52425 Jülich, Germany
Get access

Abstract

Thin films of amorphous Si1−xGex:H with x=0, 0.3, 0.6, and 1 were deposited by RF glow discharge at 200-250°C on SnO2/glass substrates. The tin dioxide was reduced by heat treatment at the temperature range of 400-600°C resulting in a layered structure of silicon oxide, tin suboxide and ß-Sn which formed at the a-Si1−xGex:H/SnO2 interface. A strong dependence of the extent of the reduction on the Ge content in the a-Si1−xGex:H films was found: at low temperatures (T≤475°C) the Si-rich layers were more reactive, whereas at T≥475°C the Ge-rich films totally reduced the SnO2. The interfacial reduction process was followed by a drop in the transparency and drastic changes in the sheet resistance of the a-Si1−xGex:H/SnO2 contacts.

PACS: 61.43.Dq; 78.66; 82.65.-i; 82.65.Fr; 82.65.Yh

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Kazmerski, L.L., Intern Mater. Rev.,34, 185 (1985); W.Krühler, Appl. Phys. A53, 54 (1991).CrossRefGoogle Scholar
2 Chopra, K.L., Major, S. and Pandya, D.K., Thin Solid Films, 102, 1 (1983); A.L. Davar and J.C. Toshi, J. Mater. Sci. 19, 1 (1984).CrossRefGoogle Scholar
3 Schade, H., Smith, Z.E., Thomas, J.H., and Catalano, A., Thin Solid Films, 117, 149 (1984); S.Kumar and B.Drevillon, J. Appl. Phys. 65, 3023 (1989); Y.H. Yang, G.F .Feng, M. Katyar, N. Maley, and J.R. Abelson, J. Vac. Sci. Technol. A11, 1414 (1993).Google Scholar
4 Handbook of Chemistry and Physics, CRC Press Inc. 72th Edition, 1991.Google Scholar
5 Edelman, F., Aleksandrov, L.N., Fedina, L.I., and Latuta, V.S., Thin Solid Films, 34, 107 (1976); R.J. Wolf, T.M. Christensen, N.G. Coit, and R.W. Swinford, J. Vac. Sci. Tech. All, 2725 (1993).CrossRefGoogle Scholar
6 Fountain, G.G., Rudder, R.A., Hattangady, S.V., Vitkavage, D.J., Markunas, R.J., and J.B. Posthill, Electronic Letts. 24, 1010 (1988); D.J. Hymes and J.J. Rosenberg, J. Electrochem. Soc. 135, 961 (1988).CrossRefGoogle Scholar
7 Edelman, F., Komem, Y., Iyer, S.S., Heydenreich, J., and Baither, D., Thin Solid Films, 222, 57 (1992); F. Edelman, Y. Komem, M. Bendayan, and R. Beserman, J. Appl. Phys. 72, 5153 (1992).Google Scholar
8 LeGoues, F.K., Rosenberg, R., and Meyerson, B., Appl.Phys.Lett. 54, 644 (1989); F.K.LeGoues, R.Rosenberg, T.Nguyen, F.Himpsel, and B.Meyerson, J. Appl. Phys. 65, 1724 (1989); J.P.Zhang, P.L.F. Hemment, S.M. Newstead, A.R. Powell, T.E. Whall, and E.H.C. Parker, Thin Solid Films, 222,141 (1992).CrossRefGoogle Scholar
9 Martins, J.L. and Zunger, A., Phys.Rev.Lett. 56, 1400 (1986).Google Scholar
10 Liu, W.S., Lee, E.W., Nicolet, M.-A., Arbet-Engels, V., Wang, K.L., Abuhadba, N.M., and Aita, C.R., J. Appl. Phys. 71, 4015 (1992).CrossRefGoogle Scholar
11 Sladkova, J., Czech.J. Phys. 18, 801 (1968); J. Sladkova, ibid. 27, 943 (1977).Google Scholar