Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-22T22:02:51.607Z Has data issue: false hasContentIssue false

Reduced Pressure - Chemical Vapor Deposition of Ge thick layers on Si(001) for microelectronics and optoelectronics purposes

Published online by Cambridge University Press:  17 March 2011

J.M. Hartmann
Affiliation:
CEA-DRT, LETI / D2NT & DPTS, CEA – GRE, 17, Avenue des Martyrs 38054 Grenoble Cedex, France
A.M. Papon
Affiliation:
CEA-DRT, LETI / D2NT & DPTS, CEA – GRE, 17, Avenue des Martyrs 38054 Grenoble Cedex, France
P. Holliger
Affiliation:
CEA-DRT, LETI / D2NT & DPTS, CEA – GRE, 17, Avenue des Martyrs 38054 Grenoble Cedex, France
G. Rolland
Affiliation:
CEA-DRT, LETI / D2NT & DPTS, CEA – GRE, 17, Avenue des Martyrs 38054 Grenoble Cedex, France
T. Billon
Affiliation:
CEA-DRT, LETI / D2NT & DPTS, CEA – GRE, 17, Avenue des Martyrs 38054 Grenoble Cedex, France
M. Rouvière
Affiliation:
also STMicroelectronics, 38926 Crolles Cedex, France
L. Vivien
Affiliation:
IEF (UMR 8622 CNRS), Bât. 220, Université Paris-Sud, 91405 Orsay Cedex, France
S. Laval
Affiliation:
IEF (UMR 8622 CNRS), Bât. 220, Université Paris-Sud, 91405 Orsay Cedex, France
Get access

Abstract

Ge-based photodetectors operating in the telecommunication wavelength range (1.3-1.6 μm) of silica fibers are highly desirable for the development of optical interconnections on SOI substrates. We have therefore investigated the structural and optical properties of Ge thick films grown directly onto Si(001) substrates using a production-compatible Reduced Pressure Chemical Vapor Deposition system. The thick Ge layers grown using a low-temperature / high temperature approach are in a definite tensile-strain configuration, with a threading dislocation density for as-grown layers of the order of 3×107 cm−2. The surface of those Ge thick layers is rather smooth, especially when considering the large lattice mismatch in-between Ge and Si. The root mean square roughness is indeed of the order of 2 nm only for as-grown layers. The layers produced are of high optical quality. An absorption coefficient α ≈10000 cm−1 @ 1.3μm (4500 cm−1 @ 1.55μm) has been found at room temperature for our Ge thick layers. A 30 meV bandgap shrinkage with respect to bulk Ge (0.77 eV ≎ 0.80 eV) is observed as well in those tensilestrained Ge epilayers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Masini, G., Colace, L. and Assanto, G., Mater. Sci. Eng. B 89, 2 (2002).Google Scholar
[2] Colace, L., Masini, G. and Assanto, G., IEEE J. Quant. Electron. 35, 1843 (1999).Google Scholar
[3] Colace, L., Masini, G., Galluzzi, F., Assanto, G., Capellini, G., Gaspare, L. Di, Pelange, E. and Evangelisti, F., Appl. Phys. Lett. 72, 3175 (1998).Google Scholar
[4] Colace, L., Masini, G., Assanto, G., Luan, H.-C., Wada, K. and Kimerling, L.C., Appl. Phys. Lett. 76, 1231 (2000).Google Scholar
[5] Famà, S., Colace, L., Masini, G., Assanto, G. and Luan, H.-C., Appl. Phys. Lett. 81, 586 (2002).Google Scholar
[6] Currie, M.T., Samavedam, S.B., Langdo, T.A., Leitz, C.W. and Fitzgerald, E.A., Appl. Phys. Lett. 72, 1718 (1998).Google Scholar
[7] Thomas, S.G., Bharatan, S., Jones, R.E., Thoma, R., Zirkle, T., Edwards, N.V., Liu, R., Wang, X.D., Xie, Q., Rosenblad, C., Ramm, J., Isella, G. and Känel, H. von, J. Electron. Mater. 32, 976 (2003).Google Scholar
[8] Langdo, T.A., Leitz, C.W., Currie, M.T., Fitzgerald, E.A., Lochfeld, A. and Antoniadis, D.A., Appl. Phys. Lett. 76, 3700 (2000).Google Scholar
[9] Hernandez, C., Campidelli, Y. and Bensahel, D., US Patent 6,537,370 B1 (2003).Google Scholar
[10] Luan, H.C., Lim, D.R., Lee, K.K., Chen, K.M., Sandland, J., Wada, K. and Kimerling, L.C., Appl. Phys. Lett. 75, 2909 (1999).Google Scholar
[11] Hartmann, J.M., Abbadie, A., Papon, A.M., Holliger, P., Rolland, G., Billon, T., Fédéli, J.M., Rouvière, M., Vivien, L. and Laval, S., J. Appl. Phys. 95, 5905 (2004).Google Scholar
[12] Sakai, A., Tatsumi, T. and Aoyama, K., Appl. Phys. Lett. 71, 3510 (1997).Google Scholar
[13] Eaglesham, D.J. and Cerullo, M., Appl. Phys. Lett. 58, 2276 (1991).Google Scholar
[14] Ishikawa, Y., Wada, K., Cannon, D.D., Liu, J.F., Luan, H.-C. and Kimerling, L.C., Appl. Phys. Lett. 82, 2044 (2003).Google Scholar
[15] Sze, S.M., Physics of Semiconductor Devices, 2nd edition, John Wyley and Sons, 1981.Google Scholar
[16] Hartmann, J.M., Bogumilowicz, Y., Holliger, P., Laugier, F., Truche, R., Rolland, G., Séméria, M.N., Renard, V., Olshanetsky, E.B., Estibals, O., Kvon, Z.D., Portal, J.C., Vincent, L., Cristiano, E. and Claverie, A., Semicond. Sci. Technol. 19, 311 (2004).Google Scholar
[17] Dash, W.C. and Newman, R., Phys. Rev. 99, 1151 (1955).Google Scholar