Hostname: page-component-7bb8b95d7b-w7rtg Total loading time: 0 Render date: 2024-09-19T10:14:20.625Z Has data issue: false hasContentIssue false

Redistribution of Hydrogen in Gan, Ain, and Inn

Published online by Cambridge University Press:  21 February 2011

J. M. Zavada
Affiliation:
U.S. Army Research Office, Research Triangle Park, NC 27709
R. G. Wilson
Affiliation:
Hughes Research Laboratories, Malibu, CA 90265
S. J. Pearton
Affiliation:
Department of Materials Science & Engineering, University of Florida, Gainesville, FL 32611
C. R. Abernathy
Affiliation:
Department of Materials Science & Engineering, University of Florida, Gainesville, FL 32611
Get access

Abstract

Hydrogen incorporation during gas-phase growth of III-V nitrides is thought to play an important role in determining the apparent doping efficiency, due to unintentional passivation of dopants. Hydrogen implantation can also be used for electrical and optical isolation of neighboring devices, as in other lll-V materials such as GaAs. We have implanted 2H at 40 keV to doses of 5 × 1015 cm-2 at room temperature into epitaxial layers of GaN, AIN and InN grown by MOMBE on GaAs substrates, and measured the ion ranges and hydrogen redistribution upon subsequent furnace annealing. The hydrogen profiles remain unchanged for annealing temperatures up to 800–900°C for GaN and AIN, and 600° for InN. Samples were also deuterated from an ECR plasma at 250 or 400°C for 30 min, producing 2H incorporation depths of ≤ 1 μ in GaN. With annealing, there is no significant hydrogen redistribution observed at temperatures up 800°C. Hydrogen concentrations remain in the range ∼ 1019 cm-3 under these conditions. At 900°C considerable hydrogen outdiffusion to the surface occurs. The thermal stability of hydrogen in these III-V nitride films indicates the need for post-growth annealing at high temperatures to achieve appreciable doping efficiencies.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Strite, S. and Morkoc, H., J. Vac. Aci. Technol. B10, 1237 (1992).Google Scholar
2. Matsuoka, T., Sasaki, T. and Katsui, A., Optoelectronics - Devices and Technologies 5, 53 (1990).Google Scholar
3. Amano, H., Kito, M., Hiramatsu, K., and Akasuki, I., Jap. J. Appl. Phys. 28, L2112 (1989).Google Scholar
4. Khan, M.A., Kuznia, J.N., Olson, D.T., Blasingame, M. and Bhattarai, A.R., Appl. Phys. Lett. 63, 2455 (1993).Google Scholar
5. Nakamura, S., Mukai, T., Senoh, M. and Iwasa, N., Jap. J. Appl. Phys. 31, L139 (1992).Google Scholar
6. Davis, R.F., Proc. IEEE 79, 702 (1991).Google Scholar
7. Nakamura, S., Senoh, M., and Mukai, T., Jap. J. Appl. Phys. 30, L1708 (1991).Google Scholar
8. Nakamura, S., Iwasa, N., Senoh, M. and Mukai, T., Jap. J. Appl. Phys. 31, 1258 (1992).Google Scholar
9. Van Vechten, J.A., Zook, J.D., Horning, R.D., and Goldenberg, B., Jap. J. Appl. Phys. 31, 3662 (1992).Google Scholar
10. Brandt, M. S., Johnson, N. M., Molnar, R. J., Singh, R., and Moustakas, T. D., Appl. Phys. Lett. (To be published).Google Scholar
11. See for example, Hydrogen in Compound Semiconductors, edited by Pearton, S.J. (Trans-Tech Publishers, Zurich 1993).Google Scholar
12. Abernathy, C.R., Wisk, P., Pearton, S.J. and Ren, F., J. Vac. Sci. Technol. B11, 179 (1993).Google Scholar
13. Pankove, J. I., Mat. Res. Soc. Conf. Proc. 162, 515 (1990).Google Scholar
14. Zavada, J.M. and Wilson, R.G., in Hydrogen in Compound Semiconductors, edited by Pearton, S.J. (Trans-Tech Publishers, Zurich 1993).Google Scholar
15. Zavada, J. M., Pearton, S. J., Wilson, R. G., Wu, C. S., Stavola, M., Ren, F., Lopata, J., Dautremont-Smith, W. C., and Novak, S. W., J. Appl. Phys. 65 347 (1989).Google Scholar
16. Pearton, S. J., Dautremont-Smith, W. C., Lopata, J., Tu, C. W. and Abernathy, C. R., Phys. Rev. B36, 4260 (1987).Google Scholar