Hostname: page-component-7c8c6479df-995ml Total loading time: 0 Render date: 2024-03-18T10:54:20.340Z Has data issue: false hasContentIssue false

Rectifying Polarity Switch of Pt/TiO2-x/Pt

Published online by Cambridge University Press:  31 January 2011

Ni Zhong
Affiliation:
zhongni@hotmail.com, National Institute of Advanced Industrial Science, 1-1-1central 2, Umezono, Tsukuba, Ibaraki, 305-8568, Japan
Hisashi Shima
Affiliation:
shima-hisashi@aist.go.jp, National Institute of Advanced Industrial Science, Tsukuba, Japan
Hiro Akinaga
Affiliation:
akinaga.hiro@aist.go.jp, National Institute of Advanced Industrial Science, Tsukuba, Japan
Get access

Abstract

Current-voltage (I-V) characteristic of Pt/TiO2-x/Pt has been investigated. The Pt/TiO2-x/Pt devices in the initial state exhibit a rectifying I-V behavior. By applying a pulse voltage, the rectifying polarity could be switched to an opposite direction. The mechanism of the rectifying polarity switch is proposed as the local drift of defects, such as oxygen vacancies (VO), due to applying pulse voltage. It is found that the required pulse voltage height for the polarity switch (Vswitch) exhibits much dependence on the operation temperature and width of applied pulse voltage. With an increase of the pulse voltage width or the measurement temperature (T), Vswitch exhibits a decrease with increase of T. These results suggest that the rectifying polarity switch in the Pt/TiO2-x/Pt is attributed to a thermal and dynamic dependence process, which agree well with the localized migration of VO induced by applied pulse voltage.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Strukov, D. B. Snider, G. S. Stewart, D. R. and Williams, R. S. Nature 453, 80(2008).Google Scholar
[2] Yang, J. J. Pickett, D. Li, X. M. Ohiberg, D. A. A., Stewart, D. R. and Williams, R. S. Nature nanotechnology 3, 429(2008).Google Scholar
[3] Shima, H. Zhong, N. and Akinaga, H. Appl. Phys. Lett. 94, 082905(2009).Google Scholar
[4] Zhong, N. Shima, H. and Akinaga, H. Jpn. J. Appl. Phys., (in press).Google Scholar
[5] Cronemeyer, D. C. Phys. Rev. 87, 876(1952).Google Scholar
[6] Miyaoka, H. Mizutani, G.. Sano, H. Omote, M. Nakatsuji, K. and Komori, F. Solid State Commum. 123, 399(2002).Google Scholar
[7] Janousch, M. Meijer, G. I. Straub, U. Delley, B. Karg, S. F. and Andreasson, B. P. Adv. Mater. (Weinheim. Germ.) 19, 2232(2007)Google Scholar
[8] Meijer, G. I. Staub, U. Janousch, M. Johnson, S. L. Delley, B. and Neisius, T.. Phys. Rev. B 72, 155102(2005).Google Scholar
[9] Jameson, J. R. Fukuzumi, Y. Wang, Z. griffin, P. Tsunoda, K. Meijer, G. I. and Nishi, Y. Appl. Phys. Lett. 91, 112101(2007).Google Scholar
[10] Schottky, W. Naturwissenschaftern 26, 843 (1938).Google Scholar
[11] Sze, S. M. Physics of Semiconductor Devices 2nd ed. (Wiley, Hoboken, 1981).Google Scholar