Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-19T03:51:08.078Z Has data issue: false hasContentIssue false

Recrystallization Processing of Cold-Rolled Nickel

Published online by Cambridge University Press:  15 March 2011

I. Baker
Affiliation:
Thayer School of Engineering, Dartmouth College, Hanover, NH 03755
H. Chang
Affiliation:
Thayer School of Engineering, Dartmouth College, Hanover, NH 03755
J. Li
Affiliation:
Thayer School of Engineering, Dartmouth College, Hanover, NH 03755
Get access

Abstract

We have examined the effects of isothermal annealing, at a variety of temperatures, and directional annealing, under a range of conditions, on both primary recrystallization and secondary recrystallization in 90% cold-rolled 99.5% nickel of two different textures. The initial texture is shown to influence the rolling texture and, hence, the results of subsequent annealing. It was found that one alloy showed a cube texture after primary recrystallization, underwent abnormal grain growth upon annealing at high temperatures, and could be directionally (secondary) recrystallized to give large columnar grains. In contrast, the other alloy produce a weak cube texture after primary recrystallization, showed only normal grain growth upon annealing at higher temperatures, and could not be directionally annealed to produce columnar grains. The implications of these results are discussed for producing columnar grains.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wassermann, G. and Grewen, J., Texture metallischer Werstoffe, 1962, Berlin. Translated under the title Tekstury metallicheskikh matrialov, 1969, Metallurgiya, Moscow.(1969).Google Scholar
2. Lejcek, P. and Sima, V., Mat. Sci. Eng., 60 (1983) 121.Google Scholar
3. Makita, H., Hanada, S., and Izumi, O., Acta Metall., 36 (1988) 403.Google Scholar
4. Goyal, A., List, F.A., Mathis, J., Paranthaman, M., Specht, E.D., Norton, D.P., Park, C., Lee, D.F., Kroeger, D.M., Christen, D.K., Budai, J.D., and Martin, P.M., J. Supercond., 11(5) (1988) 481.Google Scholar
5. Goyal, A., Norton, D.P., Budai, J.D., Paranthaman, M., Specht, E.D., Kroeger, D.M., Christen, D.K., He, Q., Saffian, B., List, F.A., Lee, D.F., Martin, P.M., Klabunde, C.E., Hartfield, E. and Sikka, V.K.. Appl. Phys. Lett., 69 (1996) 1795.Google Scholar
6. Gervas'eva, I.V., Rodionov, D.P., Sokolove, B.K., Khlebnikova, Yu.V. and Dolgikh, D.V., Phys. Met. Metall., 90 (2000) 295.Google Scholar
7. Boer, B. De, Reger, N., Opitz, R., Eickemeyer, J., Holzapfel, B. and Schultz, L., ICOTOM 12, (1999) NRC Research Press, Ottawa, Canada. 944.Google Scholar
8. Kim, H., Yoo, J., Jung, K., Lee, J., Oh, S. and Youm, D., Supercond. Sci. Technol., 13 (2000) 995.Google Scholar
9. Boer, B. De, Eickemeyer, J., Reger, N., Fernandez, L., Richer, G-R.J., Holzapfel, B., Schultz, L., Prusseit, W. and Berberich, P.. 2001. Acta Mater., 49 (2001) 1421.Google Scholar
10. Nast, R., Obst, B., Goldacker, W. and Schauer, W., Proc. Mat. Res. Soc., 659 (2001) II10.3.1. Google Scholar
11. Nast, R., B. Obst and Goldacker, W., Physica C, 372–376 (2002) 733.Google Scholar
12. Hjelen, J., Orsund, R. and Nes, E., Acta Metall., 39 (1991) 1377.Google Scholar
13. Daaland, O. and Nes, E. Acta Mater., 44 (1996) 1389.Google Scholar
14. Doherty, R.D., Kashyap, K. and Panchanadeeswaran, S., Act Metall., 41 (1993) 3029.Google Scholar
15. Doherty, R.D., Prog. Mater. Sci., 42 (1997) 39.Google Scholar
16. Lin, P., Palumbo, G., Harase, J. and Aust, K.T., Acta Mater., 44 (1996) 4677.Google Scholar
17. Woo, J.S., Han, C.H., Hong, B-D., Harase, J., Acta Mater., 46 (1998) 4905.Google Scholar
18. Hayakawa, Y., M. Muraki and Szpunar, J.A., Acta Mater., 46 (1998)1063.Google Scholar
19. Hayakawa, Y. and Szpunar, J.A., Acta Mater., 45 (1997) 4713.Google Scholar
20. Hayakawa, Y., Szpunar, J.A., Acta Mater., 45 (1997)1285.Google Scholar
21. Baker, I. and Li, J., Microsc. Res. Tech., (2004) in press.Google Scholar
22. Baker, I., Li, J. and Frost, H. J., submitted to TMS Letters., (2004).Google Scholar
23. Bowles, J.S. and Boas, W., J. Inst. Metals, 74 (1948) 501.Google Scholar
24. Kronberg, M.L. and Wilson, F.H., Trans. Metall. Soc. AIME., 1985 (1949) 219.Google Scholar
25. Abbruzzese, G. and Lücke, K., Acta Metall., 34 (1986) 905.Google Scholar
26. Abbruzzese, G. and Lücke, K., Acta Metall., 36 (1988) 55.Google Scholar
27. Abbruzzese, G., Lücke, K. and Eichelkraut, H., ICOTOM., 8. Metallurgical Society. (1988) Warrendale PA. 693.Google Scholar
28. Heckelmann, I., Abbruzzese, G. and Lücke, K., Mater. Sci. Forum., 94–96 (1992) 39.Google Scholar
29. Li, J. J, , Johns, S.L., Iliescu, B., Frost, H.J. and Baker, I., Acta Mater., 50 (2002) 4491.Google Scholar
30. Li, J. and Baker, I., submitted to Mat. Sci. Eng., (2004).Google Scholar
31. Haessner, F., Hoschek, G. and Tölg, G., Acta Metall., 27 (1979) 1539.Google Scholar
32. Humphreys, F.J. and Hatherly, M., Recrystallization and Related Annealing Phenomena, Pergamon, Oxford, 1995, p99100.Google Scholar