Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-18T20:21:20.819Z Has data issue: false hasContentIssue false

Reciprocal-Space and Real-Space Analyses of Compositional Modulation in InAs/AlAs Short-Period Superlattices

Published online by Cambridge University Press:  10 February 2011

D. M. Follstaedt
Affiliation:
Sandia National Laboratories, M.S. 1056, Albuquerque, NM 87185–1056
S. R. Lee
Affiliation:
Sandia National Laboratories, M.S. 1056, Albuquerque, NM 87185–1056
J. L. Reno
Affiliation:
Sandia National Laboratories, M.S. 1056, Albuquerque, NM 87185–1056
E. D. Jones
Affiliation:
Sandia National Laboratories, M.S. 1056, Albuquerque, NM 87185–1056
R. D. Twesten
Affiliation:
University of Illinois, Urbana, IL 61801–2985
A. G. Norman
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401–3393
S. P. Ahrenkiel
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401–3393
H. R. Moutinho
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401–3393
A. Mascarenhas
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401–3393
J. Mirecki Millunchick
Affiliation:
University of Michigan, Ann Arbor, MI 48109–2136
Get access

Abstract

The microstructure of lateral composition modulation in InAs/AlAs superlattices grown by MBE on InP is examined. The use of x-ray diffraction, TEM, AFM, and STEM to characterize the modulations is discussed. Combining the information from these techniques gives increased insight into the phenomenon and how to manipulate it. Diffraction measures the intensity of modulation and its wavelength, and is used to identify growth conditions giving strong modulation. The TEM and STEM analyses indicate that local compositions are modulated by as much as 0.38 InAs mole fraction. Plan-view images show that modulated structures consists of short (≳0.2 μm) In-rich wires with a 2D organization in a (001) growth plane. However, growth on miscut substrates can produce a single modulation along the miscut direction with much longer wires (≲0.4 μm), as desired for potential applications. Photoluminescence studies demonstrate that the modulation has large effects on the bandgap energy of the superlattice.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Cahn, J. W., Acta Metall. 9, 795 (1961).Google Scholar
[2]Stringfellow, G. B., J. Cryst. Growth 58, 194 (1982); 65, 454 (1983).Google Scholar
[3]Chou, S. T., Cheng, K. Y., Chou, L. J. and Hsieh, K. C., Appl. Phys. Lett. 66, 2220 (1995).Google Scholar
[4]Millunchick, J. Mirecki, Twesten, R. D., Lee, S. R., Follstaedt, D. M., Jones, E. D., Ahrenkiel, S. P., Zhang, Y., Cheong, H. M. and Mascarenhas, A., MRS Bulletin 22 (7), 38 (1997).Google Scholar
[5]Lee, S. R., Doyle, B. L., Drummond, T. J., Medernach, J. W. and Schneider, R. P. Jr., in ”Advances in x-ray Analysis, Vol.38”, eds. Predecki, P. et a.1, (Plenum Press, NY, 1995) p. 201.Google Scholar
[6]Lee, S. R., Millunchick, J. Mirecki, Twesten, R. D., Follstaedt, D. M., Reno, J. L., Ahrenkiel, S. P. and Norman, A. G., J. Materials Science: Materials In Electronics 10, 191 (1999).Google Scholar
[7]Ahrenkiel, S. P., Norman, A. G., AI-Jassim, M. M., Mascarenhas, A., Millunchick, J. Mirecki, Twesten, R. D., Lee, S. R., Follstaedt, D. M. and Jones, E. D., J. Appl. Phys. 84, 6088 (1998).Google Scholar
[8]Norman, A. G., Ahrenkiel, S. P., Moutinho, H., AI-Jassim, M. M., Mascarenhas, A., Millunchick, J. Mirecki, Lee, S. R., Twesten, R. D., Follstaedt, D. M., Reno, J. L. and Jones, E. D., Appl. Phys. Lett. 73, 1844 (1998).Google Scholar
[9]Twesten, R. D., Follstaedt, D. M., Lee, S. R., Jones, E. D., Reno, J. L., Millunchick, J. Mirecki, Norman, A. G., Ahrenkiel, S. P. and Mascarenhas, A., Phys. Rev. B 60, 13619 (1999).Google Scholar
[10]Twesten, R. D., Millunchick, J. Mirecki, Ahrenkiel, S. P., Zhang, Y., Lee, S. R., Follstaedt, D. M., Mascarenhas, A. and Jones, E. D., Mat. Res. Soc. Symp. Proc. 441, 187 (1997).Google Scholar
[11]Norman, A. G., Ahrenkiel, S. P., Moutinho, H. R., Baliff, C., Al-Jassim, M. M., Mascarenhas, A., Follstaedt, D. M., Lee, S. R., Reno, J. L., Jones, E. D., Millunchick, J. Mirecki, and Twesten, R. D., elsewhere these proceedings.Google Scholar
[12]Howie, A., J. Microsc. 117, 11 (1979).Google Scholar
[13]Follstaedt, D. M., Twesten, R. D., Millunchick, J. Mirecki, Lee, S. R., Jones, E. D., Ahrenkiel, S. P., Zhang, Y. and Mascarenhas, A., Physica E 2, 325 (1998).Google Scholar
[14]Li, H., Wu, J., Xu, B., Liang, J. and Wang, Z., Appl. Phys. Lett. 72, 2123 (1998).Google Scholar
[15]Brault, J., Gendry, M., Grenet, G., Hollinger, G., Desières, Y. and Benyattou, T., Appl. Phys. Lett. 73, 2932 (1998).Google Scholar
[16]Jones, E. D., Follstaedt, D. M., Lee, S. R., Reno, J. L., Millunchick, J. Mirecki, Ahrenkiel, S. P., Mascarenhas, A., Norman, A. G., Zhang, Y. and Twesten, R. D., Thin Solid Films, 357, 31 (1999).Google Scholar
[17] E = 3110 − 3395x + 725x2 (in meV); Fritz, I. J., private communication, 1998.Google Scholar
[18]Twesten, R. D., Follstaedt, D. M., Millunchick, J. Mirecki, Lee, S. R., Norman, A. G., Ahrenkiel, S. P., Reno, J. L, Jones, E. D., Mascarenhas, A., and Zhang, Y., Microscopy and Microanalysis 5 (supplement 2: Proceedings), 174 (1999).Google Scholar
[19]Zhang, Y. and Mascarenhas, A., Phys. Rev. B 57, 12245 (1998).Google Scholar