Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-24T22:09:57.904Z Has data issue: false hasContentIssue false

Recent Work on Environmental Embrittlement in Silicides

Published online by Cambridge University Press:  15 February 2011

Guoliang Chen
Affiliation:
University of Science and Technology Beijing, State Key Laboratory for Advanced Metals and Materials, Beijing 100083, China, sklamm@public3.bta.net.cn
Jihua Peng
Affiliation:
University of Science and Technology Beijing, State Key Laboratory for Advanced Metals and Materials, Beijing 100083, China, sklamm@public3.bta.net.cn
Xitao Wang
Affiliation:
University of Science and Technology Beijing, State Key Laboratory for Advanced Metals and Materials, Beijing 100083, China, sklamm@public3.bta.net.cn
Get access

Abstract

This paper reviewed the recent progress in the environmental embrittlement of suicide. On the surface of suicides, the Si in the suicides such as Fe3(Si,Al) alloy reacts with both oxygen and water vapor more easy than with iron. A molecular hydrogen machanism of surface reaction, i. e. Si + 2H2O = SiO2 + 2H2, can be derived. The moisture-induced embrittlement of suicides can be considered to be an embrittlement in a localized high pressure molecular hydrogen condition. It is a kinetic hydrogen gas embrittlement. Suicides may have more severely intrinsic brittleness than iron aluminides due to their special electronic structure and bonding mechanism, leading to elucidate the role of environment on ductility with difficulty. The improvement of both the intrinsic brittleness and moisture-induced embrittlement are critical for the development of suicides.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Takasugi, T., Misawa, T., Saitoh, H., Mater. Sci. & Eng. A192/193, p. 413 (1995).Google Scholar
2. Takasugi, T., Izumi, O., Scr. Metall., 19, p. 903 (1985).Google Scholar
3. Liu, C. T., Lee, H. E., McKamey, C. G., Scr. Metall., 23, p. 875 (1989).Google Scholar
4. Liu, C. T., Mckamey, C. G., Lee, H. E., Scr. Metall., 24, p. 385 (1990).Google Scholar
5. Liu, C. T., Oliver, W. C., Scr. Metall., 25, p. 1,933 (1991).Google Scholar
6. Takasugi, T., Ma, C. L., Hanada, S., Mater. Sei. Eng., A192/193, p. 407 (1995).Google Scholar
7. Takasugi, T., Nagashima, M., Izumi, O., Acta Metall., 38, p. 747 (1990).Google Scholar
8. Takasugi, T., Yoshida, M., J. Mater. Sci., 26, p. 3032 (1991).Google Scholar
9. Takasugi, T., Yoshida, M., J. Mater. Sci., 26, p. 3517 (1991).Google Scholar
10. Yoshida, M., Takasugi, T., Phil. Mag., A65,p. 41 (1992).Google Scholar
11. Oliver, W. C., in High Temperature ordered intermetallic alloys HI, edited by Liu, C. T. et al., MRS Pittsburgh, PA(1989), p. 396.Google Scholar
12. Kumar, K. S., Liu, C. T., Wright, J. L., Intermetallics, 4, p. 309 (1996).Google Scholar
13. Ma, C. L., Takasugi, , Hanada, S., in High temperature ordered intermetallic alloys VL Part 2, Vol. 364. edited by Horton, J. A. et al., MRS Pittsburgh, PA(1995), p.1159.Google Scholar
14. Liu, C. T., George, E. P., Oliver, W. C., Intermetallics, 4, p. 77 (1996).Google Scholar
15. Takasugi, T., Intermetallics, 4, supp., p.s181 (1996).Google Scholar
16. Tanabe, H., Douki, T., Takasugi, T., Misawa, T., Intermetallics, 4, supp., p. s189 (1996).Google Scholar
17. Gleason, N. R., Gerken, C. A., Strongin, D. R., App. Surf. Sci., 72, p. 215 (1993).Google Scholar
18. Chen, G.L., Peng, J.H., Wang, X. T., Xu, W. X., (unpublished).Google Scholar
19. Chen, G.L., Peng, J.H., Xu, W. X., (unpublished).Google Scholar
20. Vitek, V., Chen, S. P., Voter, A. F., Kruisman, J. J., De Hossen, J. Th. M., in Grain boundary chemistry and intergranular fracture. Edited by Was, G. S., Braemmer, S. M., Mat. Sci. Forum, 46, p. 237(1989).Google Scholar
21. Vitek, V., Kruisman, J. J., De Hossen, J. Th. M., Acta Metall., 36, p. 2729 (1989).Google Scholar
22. Takasugi, T., Nagashima, M., Hanada, S., Mater. Trans., JIM, 34, p. 775 (1993).Google Scholar
23. George, E. P., Liu, C. T., Pope, D. P., Scripta Metall., 30, P.37 (1994).Google Scholar