Skip to main content Accessibility help
×
Home

Recent Developments in Gas Source Molecular Beam Epitaxy

  • J. E. Cunningham (a1)

Abstract

We review Gas Source Molecular Beam Epitaxy of the GaAs/AlGaAs system. Among the growing number of condensed matter discoveries in materials grown by this approach we describe within resonant tunneling structures. This example serves to demonstrate the high quality quantum well formation and suppressed rate of dopant segregation that occurs during the GSMBE approach. We find a physical basis to quantify the latter growth effects when dopant segregation is viewed in two new ways. First, the broken translational symmetry created by the surface leads to dopant motion (as segregation) that otherwise is not allowed in the crystal interior (as diffusion). Secondly, dopants can dimerize on the crystal surface and this ultimately dictates how the rates of incorporation and segregation proceeds. The manner in which growth creates or destroyes covalent bonds of dopants on semiconductor surfaces thus presents new opportunities to improve dopant control.

Copyright

References

Hide All
1. Parrish, M. B., J. Crystal Growth, 81, 249 (1987).
2. Cunningham, J. E., J. Vac. Sci. and Technol. B 6, 599 (1989).
3. Quigley, J. H., Hafich, M. J., Lee, H. Y., Stave, R. E. and Robinson, G. Y., J. Vac. Sci. And Technol. B. 358 (1989).
4. Cunningham, J. E., Goossen, K. W., Williams, M. and Jan, W., Appl. Phys. Lett. 60, 727 (1992).
5. Hou, H. Q. and Tu, C. W., J. Crystal Growth, 120, 167 (1992).
6. Panish, M. B., J. Electrochem. Soc. 127, 2729 (1980).,
Calawa, A. R., Litton, C. W., Kapitan, L. W., Lu, P. W., Look, D. C., Proc.qf SPIE, vol. 796, 32 (1987).
Heut, D., Lambert, M., Bonnerie, D. and Dufresne, D., J. Vac. Sci. Technol. B3, 823 (1985).
7. Calawa, A. R., Appl. Phys. Letts. 38, 701 (1981)
8. Pauling, L. in The Nature of the Chemical Bond,3ed. (Cornell University Press, Ithaca, 1960)
9. Cunningham, J. E., Timp, G., Chiu, T. H., Ditzenberger, J. A., Tsang, W. T., Sergent, A. M. and Lang, D. V., J. Crystal Growth, 95, 185 (1989).
10. Cunningham, J. E., Timp, G., Chiu, T. H., Tsang, W. T. and Ageykum, E., Appl. Phys. Letts. 53, 1285 (1988).
11. Cunningham, J. E., Williams, M., Chiu, T. H., Jan, W., Stroz, F. and Westerwick, E., J. Crystal Growth, 120, 306, (1992).
12. Tsui, D. unpublished.
13. Cunningham, J. E., Timp, G., Chang, A. M., Chiu, T. H., Jan, W., Schubert, E. F., Tsang, W. T., J. Crystal Growth, 95 253 (1989).
14. Goldman, V. J., Santos, M., Shayegan, M., Cunningham, J. E., Phys. Rev. Lett. 85, 2189 (1989).
15. Timp, G., Behinger, R. E., Cunningham, J. E., Phys. Rev. B 42, 9259 (1990).
16. Timp, G., Behinger, R., Chang, A. M., Chang, T. Y., Cunningham, J. E., Phys. Rev. Letts. 58, 2814 (1987).
17. Chang, A. M., Cunningham, J. E., Sol. St. Comm. 79, 681 (1989).
18. Tsu, S., and Esaki, L., Appl. Phys. Lett. 22, 562 (1973).
Ricco, B. and Ya Azbel, M., Phys. Rev. B 29, 1970 (1984).
19. Luryi, S., Appl. Phys. Lett. 47, 490 (1985).
20. Goldman, V. J., Bu, Bo and Cunningham, J. E., in “Nanostructures and Mesoscopic Systems” ed. Kirk, W. P. and Reed, M. A. (Academic, New York, 1991).
Su, B., Goldman, V. J., Su, B. and Cunningham, J. E., Science 255, 313 (1992).
Su, Bo, Goldman, V. J., and Cunningham, J. E., Phys. Rev B. 46, (1992).
22. Goldman, V. J., Tsui, D.C., and Cunningham, J. E., J. Appl. Phys., 61, 2693 (1987).
23. Goldman, V. J., Tsui, D. C., and Cunningham, J. E., Phys. Rev B. 35, 9387 (1987).
24. Goldman, V. J., Tsui, D. C., and Cunningham, J. E., Phys. Rev. Lett. 58, 1256 (1987).
25. Dellow, M. W., Beton, P. H., Langerak, C. J. G. M., Foster, T. J., Martin, P. C., Eaves, L., Henini, M., Beaumont, S. P. and Wilkinson, C. D. W., Phys. Rev. Lett. 68, 1754 (1992).
26. Ashoori, R. C., Stormer, H. L., Weiner, J. S., Pfeiffer, L. N., Pearton, S. J., Baldwin, K. W. and West, K. W., Phys. Rev. Lett. 68, 3088, (1992).
27. Tewort, M., Martin-Moreno, L., Nicholls, J. T., Pepper, M., Kelly, M. J., Law, V. J., Ritchie, D. A., Frost, J. E. F. and Jones, G.A.C., Phys. Rev. B. 45, 14407 (1992).
28. Schubert, E. F., J. Vacuum Sci. Technol. A 8, 2980 (1990).
29. Santos, M., Sajoto, T., Zrenner, A. and Shayegan, M., Appl. Phys. Lett., 53, 250 (1988).
30. Webb, C., Appl. Phys. Lett., 54, 2091 (1989).
31. Beall, R. B., Clegg, J. B. and Harris, J. J., Semicon. Sci. Technol., 3, 612 (1988).
32. Schubert, E. F., Kuo, J. M., Krop, R., Luftmann, H. S., Hopkins, L. C. and Sauer, N. J., J. Appl. Phys., 67, 1969 (1990).
33. Cunningham, J. E., Chiu, T. H., Ourmazd, A., Jan, W. and Kuo, T. Y., J. Crystal Growth, 105, (1990).
34. Cunningham, J. E., Williams, M., Chiu, T. H., Jan, W. and Storz, F., J. Vac. Sci. and Technol. B. 10, 866 (1992).
35. Wood, C. E. C. and Joyce, B. A., J. Appl. Phys. 49, 4854 (1978).
36. Casey, H. C. Jr, Pannish, M. B. and Wolfstim, K. B., J. Phys. Chem. Solids, 32, 571 (1971).
37. Pao, Y. C., Hierl, T. and Cooper, R., J. Appl. Phys., 60, 201 (1986).
38. Cunningham, J. E., Kuo, T. Y., Ourmazd, A., Goossen, K., Jan, W., Storz, F., Ren, F. and Fonstad, C. G., J. Crystal Growth, 111, 515 (1991).
39. Harris, J. J., Klegg, J. B., Beall, R. B., Castagne, J., Woodbridge, K. and Roberts, C., J. Crystal Growth, 111, 239 (1991).
40. Rocket, A., Drummond, T. J., Greene, J. E. and Morkoc, H., J. Appl. Phys. 53, 7085 (1982).
41. Nakagawa, K., Miyao, M. and Shiraki, Y., Thin Solid Films 183 (315), 1989.
42. Ota, Y., J. Electrochem. Soc. 126, 1761 (1989) and
Caber, J., Ishiwara, H. and Furukawa, S., Jpn. J. Appl. Phys. 21, L712, (1982).
43. Harris, J.J., Asheenford, D. E., Foxon, C. T., Dobson, P. J. and Joyce, B. A., Appl. Phys. A, 33, 87 (1984).
44. Enquistt, P., Wicks, G. W., Eastman, L. F. and Hitzman, C., J. Appl. Phys. 58, 4130 (1985).
45. Schubert, E.F., Luftman, H. S., Krof, R. F., Headrick, R. L. and Kuo, J. M., Appl. Phys. Lett. 57, 1799 (1990).
46. Yu, S., Gosele, U. M. and Tan, T. Y., J. Appl. Phys. 66, 2952 (1989),
Deppe, D. G. and Holonyak, N. Jr, . J. Appl. Phys. 64. R93 (1988) and
Cunningham, J. E., Chiu, T. H., Jan, W. and Kuo, T. Y., Appl.phys. Lett., 59 (1991).
47. Evidence from Scanning Tunneling Microscopy suggest that ample surface vacancies are present on GaAs surface at low temperature and hence require no thermal formation. Pashely, M. D., Haberen, K. W., Friday, W., Woodall, J. M. and Kirchner, P. D., Phys. Rev. Lett. 60, 2176 (1988).
48. van Vechten, J. A. in Handbook on Semiconductors v.3, Keller, S. P. ed. North Holland, 1980.
49. Rouviere, J. L., Kim, Y., Cunningham, J., Rentschler, J., Bourret, A. and Ourmazd, A., Phys. Rev. Lett. 68, 2798, (1992).
50. Levi, A. F. J., Mc Call, S. L. and Platzman, P. M., Appl. Phys. Letts. 54, 940 (1989).
51. Ourmazd, A., Cunningham, J., Jan, W., Rentschler, J. and Taylor, D. W., Appl. Phys. Letts. 56, 854 (1990).
52. Chiu, T. H., Cunningham, J. E., Robertson, A. and Malm, D. L., J. Crystal Growth, 105, 155 (1990).,
Tsang, W. T., Choa, F. S., Ha, N. T., J. Elect. Mat., 20, 541 (1991).,
Abemathy, C. R., Pearton, S. J., Ren, F. and Song, J., J. Crystal Growth, 113, 412 (1991).,
Malik, R. J., Nagle, J., Micovic, M., Harris, T., Ryan, R. W. and Hopkins, L. C., J. Vac. ScLTechnol. B., 10, 850, (1992).

Related content

Powered by UNSILO

Recent Developments in Gas Source Molecular Beam Epitaxy

  • J. E. Cunningham (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.