Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-15T06:23:00.994Z Has data issue: false hasContentIssue false

Recent Advances in Semiconductor Nanocluster Preparation

Published online by Cambridge University Press:  28 February 2011

A. P. Alivisatos
Affiliation:
Department of Chemistry, University of California, Berkeley, CA 94720
V. L. Colvin
Affiliation:
Department of Chemistry, University of California, Berkeley, CA 94720
A. N. Goldstein
Affiliation:
Department of Chemistry, University of California, Berkeley, CA 94720
M. A. Olshavsky
Affiliation:
Department of Chemistry, University of California, Berkeley, CA 94720
J. J. Shiang
Affiliation:
Department of Chemistry, University of California, Berkeley, CA 94720
Get access

Abstract

Semiconductor nanocrystals have received an extraordinary degree of attention during thepast few years. The electronic, optical, photochemical, and thermodynamic properties of these materials are strongly size dependent, providing a rich area of research, with many potential applications1. It remains true that the range of phenomena that can be studied in nanocrystals is limited by the quality of available samples. In this paper we describe two advances in the preparation of nanocrystalline semiconductor samples. First is the preparation of CdS nanocrystals covalently bound to a metal surface; in this configuration it is possible to study the nanocrystals by photoemission. Second, we report the organometallic synthesis of GaAs nanocrystals.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Henglein, A., Topics in Current Chemistry 143 113 (1988); L. E. Brus, J. Phys. Chem. 90 2555 (1986); L. E. Brus, IEEE J. Quant. Elec. QE-22 1909 (1987).Google Scholar
2. Brus, L.E., Nouveau J. Chim. 11, 123 (1987).Google Scholar
3. Lippens, P.E. and Lannoo, M., Physical Review B 39, 10935 (1989).Google Scholar
4. Schmitt-Rink, S., Miller, D.A.B., and Chemla, D.S., Phys. Rev. B. 35, 8113 (1987).Google Scholar
5. Hu, Y. Z. et al. , Phys. Rev. Lett. 64, 1805 (1990).Google Scholar
6. Alivisatos, A. P. et al. , J. Chem. Phys. 89, 4001 (1988).Google Scholar
7. Colvin, V. L., Goldstein, A. N., and Alivisatos, A. P., manuscript in preparation.Google Scholar
8. Steigerwald, M.L. et al. , J. Am. Chem. Soc. 110, 3046 (1988).Google Scholar
9. Nosaka, Yoshio et al. , Chem. Lett., 605 (1988).Google Scholar
10. Shiang, J.J., Goldstein, A. N., and Alivisatos, A. P., J. Chem. Phys. 92 3232 (1990).Google Scholar
11. Colvin, V.L., Alivisatos, A. P. and Tobin, J. G., submitted to Phys. Rev. Lett., May 1990.Google Scholar
12. Brus, L.E., J. Chem. Phys. 79 5566 (1983).Google Scholar
13. Schmitt-Rink, S., Miller, D. A. B., and Chemla, D. S., Phys. Rev. B 35, 8113 (1987).Google Scholar
14. Miller, D.A.B., Chemla, D. S., and Schmitt-Rink, S., Phys. Rev. B 33, 6976 (1986); ibid, Appl. Phys. Lett. 52, 2154 (1988).Google Scholar
15. Wells, R.L., Pitt, C. G., McPhail, A. T., Purdy, A. P., Shafieezad, S., and Hallock, R. B., Chemistry of Materials 1, 4 (1989).Google Scholar
16. Wells, R. L., Shafieezad, S., McPhail, A. T., Pitt, C. G., J. Chem. Soc.'Chem. Commun. 1823 (1987).Google Scholar
17. Becker, G., Gutekunst, G. and Wessely, H. J., Z. Anorg. Allg. Chemic 462, 113 (1980).Google Scholar
18.Tris (trimethylsilyl)arsine : IR (neat liquid) 2892(m), 2890(s), 2828(s), 2816 (s) 2785(vs), 1446(s), 1400(vs), 1306(s), 1259(vs), 1240(w), 1124(m), 869(w); IH NMR (300MHz, C6D6) 6 0.35 (s, -SiMe3).Google Scholar