Skip to main content Accessibility help
×
Home

Recent Advances in Ordered Intermetallics

  • C. T. Liu (a1)

Abstract

This paper briefly summarizes recent advances in intermetallic research and development. Ordered intermetallics based on aluminides and silicides possess attractive properties for structural applications at elevated temperatures in hostile environments; however, brittle fracture and poor fracture resistance limit their use as engineering materials in many cases. In recent years, considerable efforts have been devoted to the study of the brittle fracture behavior of intermetallic alloys; as a result, both intrinsic and extrinsic factors governing brittle fracture have been identified. Recent advances in first-principles calculations and atomistic simulations further help us in understanding atomic bonding, dislocation configuration, and alloying effects in intermetallics. The basic understanding has led to the development of nickel, iron, and titanium aluminide alloys with improved mechanical and metallurgical properties for structural use. Industrial interest in ductile intermetallic alloys is high, and several examples of industrial involvement are mentioned.

Copyright

References

Hide All
1. Koch, C. C., Liu, C. T., and Stoloff, N. S., ed. “High Temperature Ordered Intermetallic Alloys,” in Proceedings of Materials Research Society Symposium (Mater. Res. Soc. Proc. 39, Pittsburgh, PA, 1985).
2. Stoloff, N. S., Koch, C. C., Liu, C. T., and Izumi, O., ed. “High Temperature Ordered Intermetallic Alloys II,” in Proceedings of Materials Research Society Symposium (Mater. Res. Soc. Proc. 81, Pittsburgh, PA, 1987).
3. Liu, C. T., Taub, A. I., Stoloff, N. S., and Koch, C. C., ed. “High Temperature Ordered Intermetallic Alloys III,” in Proceedings of Materials Research Society Symposium (Mater. Res. Soc. Proc. 81, Pittsburgh, PA, 1987).
4. Johnson, L. A., Pope, D. P., and Stiegler, J. O., ed. “High Temperature Ordered Intermetallic Alloys IV,” in Proceedings of Materials Research Society Symposium (Mater. Res. Soc. Proc. 81, Pittsburgh, PA, 1987).
5. Whang, S. H., Liu, C. T., Pope, D. P., and Stiegler, J. O., ed. “High Temperature Aluminides and Intermetallics,” in Proceedings of TMS/ASM Symposium (TMS-AIME, Warrendale, PA, 1990).
6. Whang, S. H., Liu, C. T., Pope, D. P., and Stiegler, J. O., ed. “High-Temperature Aluminides Intermetallics,” Mater. Sci. Eng. A152/A153 (1992).
7. Izumi, O., ed. “Intermetallic Compounds - Structure and Mechanical Properties,” in Proceedings of JIMIS-6 (Japan Institute of Metals, Tokyo, 1991).
8. Liu, C. T., Cahn, R. W., and Sauthoff, G., ed. “Ordered Intermetallics - Physical Metallurgy and Mechanical Behavior,” NATO ASI Series, Vol.213 (Kluwer Academic Publishers, Boston, MA, 1992).
9. Kim, Y. W. and Boyer, R. R., ed. “Microstructure/Propeities Relationships in Titanium Aluminides and Alloys” (TMS-AIME, Warrendale, PA, 1991).
10. Yamaguchi, M. and Umakoshi, Y., “The Deformation Behavior of Intermetallic Superlattice Compounds,” Prog. Mater. Sci. 34(1), 1 (1990).
11. Liu, C. T., Stiegler, J. O., and Froes, F. H., “Ordered Intermetallics,” in Metals Handbook. 10th ed., Vol. 2 (ASM, Materials Park, OH, 1990), pp. 913–42.
12. Stoloff, N. S., Int. Met. Rev. 29(3), 123 (1984).
13. Baker, I., Darolia, R., Whittenberger, J. D., and Yoo, M. H., ed. “High Temperature Ordered Intermetallic Alloys V,” in Proceedings of Materials Research Society Symposium (Mater. Res. Soc. Proc, Pittsburgh, PA, 1993).
14. McKamey, C. G., DeVan, J. H., Tortorelli, P. F., and Sikka, V. K., J. Mater. Res. 6, 1779 (1991).
15. Liu, C. T., Lee, E. H., and McKamey, C. G., Scr. Metall. 23, 875 (1989).
16. Liu, C. T., McKamey, C. G., and Lee, E. H., Scr. Metall. 24, 385 (1990).
17. Takasugi, T. and Izumi, O., Acta Metall. 34, 607 (1986).
18. Masahashi, N., Takasugi, T., and Izumi, O., Metall Trans. A 19A, 353 (1988).
19. Izumi, O. and Takasugi, T., J. Mater. Res. 3, 426 (1988).
20. Takasugi, T., Masahashi, N., and Izumi, O., Scr. Metall. 20, 1317 (1986).
21. Masahashi, N., Takasugi, T., and Izumi, O., Acta Metall. 36, 1823 (1988).
22. Takasugi, T. and Izumi, O., Scr. Metall. 19, 903 (1985).
23. Kuruvilla, A. K., Ashok, S., and Stoloff, N. S., in Proceedings of the Third International Congress on Hydrogen in Metals. Vol. 2, 1982), p. 629.
24. Kuruvilla, A. K. and Stoloff, N. S., Scr. Metall. 19, 83 (1985).
25. Camus, G. M., Stoloff, N. S., and Duquette, D. J., Acta Metall. 37, 1497 (1989).
26. Liu, C. T. and Takeyama, M., Scr. Metall. 24, 1583–86 (1990).
27. Liu, C. T., Fu, C. L., George, E. P., and Painter, G. S., ISIJ Int. (October 1991).
28. Liu, C. T. and George, E. P., Scr. Metall. 24, 1285 (1990).
29. Liu, C. T. and George, E. P., pp. 527–32 in ref. 4 (1991).
30. Gaydosh, D. J. and Nathal, M. V., Scr. Metall. 24, 1281 (1990).
31. Lynch, R. J., Heldt, L. A., and Milligan, W. W., Scr. Metall. 25, 2147 (1991).
32. Shea, M., Castagna, A., and Stoloff, N. S., p. 607 in ref. 4 (1991).
33. Castagna, A. and Stoloff, N. S., Scr. Metall. 26, 673 (1992).
34. Stoloff, N. S., unpublished results, Rensselaer Polytechnic Institute (1992).
35. Liu, C. T., p. 321 in ref. 6 (1992).
36. Liu, C. T., Sikka, V. K., and McKamey, C. G., “Alloy Development of FeAl Aluminide Alloys for Structural Use in Corrosive Environments,” ORNL Report, Martin Marietta Energy Systems, Inc., Oak Ridge Natl. Lab., Oak Ridge, TN, 1993 (unpublished).
37. Liu, C. T., Scr. Metall. 25, 1231 (1991).
38. Liu, C. T., White, C. L., and Horton, J. A., Acta Metall. 33, 213 (1985).
39. Takasugi, T., George, E. P., Pope, D. P., and Izumi, O., Scr. Metall. 19, 551 (1985).
40. Ogura, T., Hanada, S., Masumoto, T., and Izumi, O., Metall. Trans. 16A, 441 (1985).
41. Liu, C. T., Scr. Metall. 27, 25 (1992).
42. Liu, C. T. and Oliver, W. C., Scr. Metall. 25, 1933 (1991).
43. Takasugi, T. and Izumi, O., Acta Metall. 33, 1247 (1985).
44. Takasugi, T., Izumi, O., and Masahashi, N., Acta Metall. 33, 1259 (1985).
45. Taub, A. I., Briant, C. L., Huang, S. C., Chang, K. M., and Jackson, M. R., Scr. Metall. 20, 129 (1986).
46. Taub, A. I. and Briant, C. L., p. 343 in ref. 2 (1987).
47. Taub, A. I. and Briant, C. L., Acta Metall. 35, 1597 (1987).
48. Vitek, V. and Chen, S. P., Scr. Metall. 25, 1237 (1991).
49. Vitek, V., Chen, S. P., Voter, A. F., Kruisman, J. J., and De Hosson, J. Th. M., “Grain Boundary Chemistry and Intergranular Fracture,” edited by Was, G. S. and Bruemmer, S. M., Mater. Sci. Forum 46, 237 (1989).
50. Yan, M., Vitek, V., and Ackland, G. J., p. 335–70 in ref. 8 (1992).
51. Kruisman, J. J., Vitek, V., and Hosson, J. Th. M. De, Acta Metall. 36, 2729 (1989).
52. Takasugi, T. and Izumi, O., Acta Metall. 34, 607 (1986).
53. Masahashi, N., Takasugi, T., and Izumi, O., Metall. Trans. 19A, 353 (1988).
54. George, E. P., Liu, C. T. and Pope, D. P., Scr. Metall. 27, 365–70 (1992).
55. Takasugi, T., Suenaga, H., and Izumi, O., J. Mater. Sci. 26, 1179 (1991).
56. Nishimura, C. and Liu, C. T., Scr. Metall. 27, 1307–11 (1992).
57. Nishimura, C. and Liu, C. T., Scr. Metall. 25, 791 (1991).
58. Aoki, A. and Izumi, O., Nippon Kinzoku Gakkaishi 43, 1190 (1979).
59. Liu, C. T., Martin Marietta Energy Systems, Inc., Oak Ridge Natl. Lab., Oak Ridge, TN, August 1992 (unpublished).
60. Liu, C. T. and Sikka, V. K., J. Met. 38, 19 (1986).
61. Liu, C. T., Sikka, V. K., Horton, J. A., and Lee, E. H., “Alloy Development and Mechanical Properties of Nickel Aluminide (Ni3Al) Alloys,” ORNL-6483, Martin Marietta Energy Systems, Inc., Oak Ridge Natl. Lab., Oak Ridge, TN, August 1988.
62. Liu, C. T., U.S. Patent No. 5,108,700 April 1992).
63. Liu, C. T., in Micon 86 (ASTM, Philadelphia, PA, 1988) p. 222.
64. Taub, A. I., Chang, K.-M., and Liu, C. T., Scr. Metall. 20, 1613 (1986).
65. Gieseke, B. G. and Sikka, V. K., Martin Marietta Energy Systems, Inc., Oak Ridge Nad. Lab., Oak Ridge, TN, August 1992 (unpublished).
66. Han, Y. F., Li, S. H., Ma, S., and Tan, Y. N., paper presented at First Pacific Rim International Conference on Advanced Materials and Processing, Hongzhou, China, June 23–27, 1992 (unpublished).
67. Vedula, K., Pathare, V., Aslamidis, I., and Titran, R. H., pp. 411421 in Ref. 1.
68. Smialek, J. L., Metall. Trans. A 9A, 309 (1978).
69. Darolia, R., J. Met. 43(3), 44 (1991).
70. Noebe, R. D., Bowman, R. R., and Nathal, M. V., accepted for publication in Int. Met. Rev. (1993).
71. Nesbitt, J. A., Vinarcik, E. J., Barrett, C. A. and Doychak, J., Mater. Sci. Eng. A153, 56166 (1992).
72. Barrett, C. A., Oxid. Met. 30, 361 (1988).
73. Ball, A. and Smallman, R. E., Acta Metall. 14, 1517 (1966).
74. Zaluzec, N. J. and Fraser, H. L., Scr. Metall. 8, 1049 (1974).
75. Baker, I. and Schulson, E. M., Metall. Trans. A 15A, 1129 (1984).
76. George, E. P. and Liu, C. T., J. Mater. Res. 5, 754 (1990).
77. Hahn, K. H. and Vedula, K., Scr. Metall. 23, 7 (1989).
78. Grala, E. M., in Mechanical Properties of Intermetallic Compounds, edited by Westbrook, J. H. (Wiley, New York, 1960), p. 368.
79. Darolia, R., Lahrman, D. F., and Field, R. D., Scr. Metall. 26, 1007 (1992).
80. Liu, C. T., Horton, J. A., Lee, E. H., and George, E. P., “Alloying Effects on Mechanical and Metallurgical properties of NLA1,” Martin Marietta Energy Systems, Inc., Oak Ridge Natl. Lab., ORNL Report, Oak Ridge, TN, 1993 (unpublished).
81. Hack, J. E., Brzeski, J. M., and Darolia, R., Scr. Metall. 27, 1259 (1992).
82. Reed-Hill, R. E. in Physical Metallurgy Principles. 2nd ed. (Van Nostrand, New York, 1973).
83. Bowman, R. R., Noebe, R. D., Raj, S. V., and Locci, I. E., Metall. Trans. A 23A, 1493 (1992).
84. Jayaram, R. and Miller, M. K., Surf. Sci. 266, 310 (1992).
85. Darolia, R., General Electricm Aircraft Engines, 1992 (private communication).
86. Rigney, J. D. and Lewandoski, J. J., Mater. Sci Eng. A 149, 143–51 (1992).
87. Noebe, R. D., Cullers, C. L., Bowman, R. R., J. Mater. Res. 7, 605 (1992).
88. Lahrman, D. F., Field, R. D., and Darolia, R., p. 603 in ref. 4 (1991).
89. Lipsitt, H., p. 351 in ref. 1 (1985).
90. Kumar, K. S. and Brown, S. A., Philos. Mag. A 65, 91 (1992).
91. George, E. P., Horton, J. A., Porter, W. D., and Schneibel, J. H., J. Mater. Res. 5, 1639 (1990).
92. Draper, S. L., Brindley, P. K., and Nathal, M. V., Metall. Trans. 23A 2541 (1992).
93. Miracle, D. B., Anton, D. L., and Graves, J. A., in Intermetallic Matrix Composite II. Vol. 273 (MRS, Pittsburgh, PA, 1992).
94. Stocks, G. M. and Gonis, A., “Alloy Phase Stability and Design,” NATO ASI Series, Vol. 163 (Kluwer Academic Publishers, Boston, MA, 1992).
95. Fu, C. L. and Yoo, M. H., Philos. Mag. Lett. 62, 159 (1990).
96. Yoo, M. H. and Fu, C. L., ISIJ Int. 31, 1049 (1991).
97. Yoo, M. H., Fu, C. L., and Lee, J. K., p. 545 in ref. 4 (1991).
98. Fu, C. L. and Yoo, M. H., p. 155 in ref. 8 (1992).
99. Yoo, M. H. and Fu, C. L., Martin Marietta Energy Systems, Inc., Oak Ridge Natl. Lab., Oak Ridge, TN, 1992 (private communication).
100. Inui, H., Oh, M. H., Nakamura, A., and Yamaguchi, M. to be published in Acta Metall. (1993).
101. Yamaguchi, M. and Inui, H., p. 217 in ref. 8 (1992).
102. Kim, Y-W., p. 777 in ref. 4 (1991), and Acta Metall. 40, 1121 (1992).
103. Fujiwara, T., Nakamura, A., Hosomi, M., Nishitani, S. R., Shirai, Y., and Yamaguchi, M., Philos. Mag. A 61, 591 (1990).
104. Kim, Y-W., Universal Energy Systems, Inc., 1992 (private communication).
105. Chan, K. S. and Kim, Y-W., Trans. Metall. A 23A, 1663 (1992).
106. Sikka, V. K., Mavity, J. T., and Anderson, K., Mater. Sci. Eng. A–153, 712 (1992).
107. Sikka, V. K., Oak Ridge Nad. Lab., Oak Ridge, TN, 1992 (private communication).
108. Darolia, R., Lahrman, D. F., Field, R. D., Dobbs, J. R., Chang, K. M., Goldman, E. H., and Konitzer, D. G., p. 679 in ref. 8 (1992).
109. Yamaguchi, M., Kyoto University, Kyoto, Japan, 1992 (private communication).
110. Meschter, P. and Schwartz, D. S., J. Met. 41, 5255 (1989).
111. Maloy, S., Heuer, A. H., Lewandowski, J. J., and Petrovic, J., J. Am. Ceram. Soc. 74, 2704 (1991).
112. Fujiwara, T., Yasuda, K., and Kodama, H., pp. 633–37 in ref. 7 (1991).
113. Anton, D. L. and Shah, D. M., pp. 361–71 in ref. 3 (1989).
114. Takeyama, M. and Liu, C. T., Mater. Sci. Eng. A132, 61 (1991).
115. Livingston, J. D., Phys. Status. Solidi A 131, 415 (1992).
116. Kanthal Super Handbook. Kanthal Furnace Products, 1986.
117. Buehler, W. J. and Wang, F. I., Ocean Eng. 1, 105–20 (1986).
118. Schetky, I. M., Sci. Am. 241, 7482 (1979).
119. Liu, C. T., Kunsmann, H., Otsuka, K., and Wuttig, M., ed., “Shape-Memory Materials and Phenomena-Fundamental Aspects and Applications,” in Proceedings of Materials Research Society Symposium (MRS, Pittsburgh, PA, 1992).
120. George, E. P., Liu, C. T., Sparks, C. J., Kao, Ming-Yuan, Horton, J. A., Kunsmann, H., and King, T., pp. 121–28 in ref. 119 (1992).
121. Hutton, A., J. Met. 44(3), 11 (1992).
122. Sagawa, M., Hirosawa, S., Yamamoto, H., Fujimura, S., and Matsura, Y., Jpn. J. Appl. Phys. 26, 785 (1987).
123. Kumar, K. S., “Silicides Technology and Applications,” in Intermetallic Compounds: Principles and Practice, edited by Westbrook, J. H. and Fleischer, R. L. (John Wiley and Sons , New York, 1993).

Related content

Powered by UNSILO

Recent Advances in Ordered Intermetallics

  • C. T. Liu (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.