Skip to main content Accessibility help

Recent Advances in Huang Diffuse Scattering

  • P. Ehrhart (a1)


Measurements of the diffuse X-ray (or neutron) scattering allow the detailed investigation of point defects in crystalline solids. The method can be applied for defect sizes ranging from isolated point defects up to large dislocation loops. The diffuse scattering intensity close to the Bragg reflections, Huang Diffuse Scattering and Asymptotic Diffuse Scattering, is of special interest as the intensities from lattice distorting defects are high and the scattering theory is most straightforward for this region of the reciprocal lattice. After a short introduction to the theoretical background and to the experimental techniques the capabilities and limitations of the method will be demonstrated with examples of experimental results. i) The structure of interstitial atoms has been investigated for low temperature irradiated crystals and for metals with interstitially dissolved solute atoms. ii) The mobility and growth of interstitial agglomerates during annealing stage II of irradiated metals is discussed. The influence of impurities on the cluster growth is demonstrated for the example of Nibase alloys. iii) Defect clusters and defect distributions within cascades as observed after different types of irradiations are discussed.



Hide All
/1/ Huang, K., Proc. Roy. Soc. A 190, 102 (1947)
/2/ Trinkaus, H., phys. stat. sol-.(b) 51, 307 (1972) and 54, 209 (1972).10.1002/pssb.2220510131
/3/ Dederichs, P.H., J. Phys. F 3, 471(1973).10.1088/0305-4608/3/2/010
/4/ Peisl, J., in Defects and their Structure in Non-Metallic Solids (B., Henderson and H.E., Hughes, eds., Plenum 1976), p. 381.10.1007/978-1-4684-2802-5_15
/5/. Larson, B.C. and Barhorst, J.F., MRS Proc. Vol.2 (Narajan and. Tan eds., North Holland 1981), p. 151.
/6/ Mayer, W., and Peisl, J., J. Nucl. Mat. 108/109 (1982) 627.10.1016/0022-3115(82)90534-7
/7/ Krivoglaz, M.A., Theory of X-ray and Thermal-Neutron Scattering by Real Crystals, (Plenum 1969).
/8/ Ehrhart, P. and Schönfeld, B., Phys. Rev. B 19, 3896 (1979).10.1103/PhysRevB.19.3896
/9/ Khanna, R., phys. stat. sol. (b), 115, 305(1983).10.1002/pssb.2221150136
/10/ Averback, R.S. and Ehrhart, P., J. Phys. F 14, 1347 and 1365 (1984).10.1088/0305-4608/14/6/006
/11/ Ohr, S.M., phys. stat. sol. (b) 64, 317 (1974).10.1002/pssb.2220640137
/12/ Ehrhart, P., Trinkaus, H. and Larson, B.C., Phys. Rev. B 25, 834 (1982).10.1103/PhysRevB.25.834
/13/ Ehrhart, P., Haubold, H.-G. and Schilling, W., Adv. in Sol. State Phys. XIV,87 (1974).10.1007/BFb0108463
/14/ Peisl, J., J. Appl. Cryst. 8, 143 (1975).10.1107/S0021889875009922
/15/ Larson, B.C. and Young, F.W. in Point Defects and Defect Interaction in Metals (J., Takamura, J., Dojama and M., Kiritani, eds. Univ. of Tokyo Press 1982), p. 679.
/16/ Burkel, E., Guērard, B.v., Metzger, H., Peisl, J. and Zeyen, C.M.F., Z. Phys. B 35, 227 (1979).10.1007/BF01319842
/17/ Metzger, H. and Peisl, J., J. Phys. F 8, 391 (1978).10.1088/0305-4608/8/3/009
/18/ Metzger, H., Peisl, J. and Wanagel, J., J. Phys. F 6, 2195 (1976).10.1088/0305-4608/6/12/006
/19/ Schubert, U., Metzger, H. and Peisl, J., J. Phys. F 14, 2457 and 2467 (1984).10.1088/0305-4608/14/11/004
/20/ Wombacher, P., Jül-942-FF (1972).
/21/ Bender, O. and Ehrhart, P., J. Phys. F 13, 911 (1983).10.1088/0305-4608/13/5/006
/22/ Ehrhart, P. and Schlagheck, U., J. Phys. F 4, 1575 and 1589 (1974).10.1088/0305-4608/4/10/006
/23/ Ehrhart, P. and Schilling, W., Phys. Rev. B 8, 2604 (1973).10.1103/PhysRevB.8.2604
/24/ Ehrhart, P., Carstanjen, H.D., Fattah, A.M. and Roberto, J.B., Phil. Mag. A 40, 843 (1979).10.1080/01418617908234878
/25/ Balzer, R., Kroggel, O. and Spalt, H., J. Phys. C 13, 6349 (1980).10.1088/0022-3719/13/34/005
/26/ Ehrhart, P., in Dimensional Stability and Mechanical Behaviour of irradiated Metals and Alloys, BNES (London 1983) p. 101.
/27/ Ehrhart, P. and Schönfeld, B., see /15/, p. 47.
/28/ Haubold, H.-G. and Martinsen, D., J. Nucl. Mat. 69/70, 644 (1978).10.1016/0022-3115(78)90302-1
/29/ Wolfer, W.G., J. Phys. F 12, 425 (1982).10.1088/0305-4608/12/3/009
/30/ Dederichs, P.H., Lehmann, C., Schober, H.R., Scholz, A. and Zeller, R., J. Nucl. Mat. 69/70, 176 (1978).10.1016/0022-3115(78)90243-X
/31/ Jacques, H. and Robrock, K.-H., see /15/, p. 159.
/32/ Ehrhart, P. and Schlagheck, U. in Fundamental Aspects of Radiation Damage in Metals, USERDA-Conf. 751006 (Robinson, M.T., Young, F.W., eds., 1975) p. 839.
/33/ Segura, E. and Ehrhart, P., Rad. Eff. 42, 233 (1979).10.1080/00337577908209142
/34/ Ehrhart, P., J. Nucl. Mat. 69/70, 200(1978).10.1016/0022-3115(78)90244-1
/35/ Guērard, B.v., Grasse, D. and Peisl, J., Phys. Rev. Lett. 44, 262 (1980).10.1103/PhysRevLett.44.262
/36/ Ingle, K.W., Perrin, R.C. and Schober, H.R., J. Phys. F 11:,1161 (1981).10.1088/0305-4608/11/6/004
/37/ Averback, R.S., Rehn, L.E., Wagner, W. and Ehrhart, P., J. Nucl. Mat. 118, 83 (1983).10.1016/0022-3115(83)90183-6
/38/ Ehrhart, P., Schönfeld, B. and Sonnenberg, K., see /15/, p. 687.
/39/ Larson, B.C., this conf.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed