Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-18T18:58:50.044Z Has data issue: false hasContentIssue false

Recent Advances in ab initio time—dependent Hartree-Fock theory and their applications to predict nonlinear optical properties of semiconductor nanoclusters

Published online by Cambridge University Press:  15 February 2011

Shashi P. Karna
Affiliation:
Air Force Research Laboratory Space Vehicles Directorate 3550 Aberdeen Avenue, Bldg. 914 Kirtland AFB, NM 87117-5776
Prakashan P. Korambath
Affiliation:
Air Force Research Laboratory Space Vehicles Directorate 3550 Aberdeen Avenue, Bldg. 914 Kirtland AFB, NM 87117-5776
Get access

Abstract

Recent advancements in ab initio time-dependent Hartree-Fock (TDHF) theory have made it a technique of choice for modeling nanoscale nonlinear optical (NLO) materials from first-principles. We have used this method to study structure-NLO property relationships of GaN, GaP and GaAs clusters. The geometry of the clusters used in the study was optimized by ab initio Hartree Fock (HF) calculations with the use of even tempered Gaussian (ETG) basis set. The clusters used in this study are of the type Gam Xn (M = 1,3,4,7 and n = 1,3,4,7) where X=N, P, and As. The GamXn clusters are in a charge neutral (q = 0) state for m = n and in appropriately charged state for mn. The magnitude of the calculated (hyper)polarizabilities appears to strongly depend on the composition of the cluster. For the same composition of heteroatoms, the hyperpolarizability depends on the size as well as the geometry of the cluster. The cluster size-dependence of calculated (hyper)polarizabilities is more pronounced for the first-hyperpolarizability. β than for the polarizability, α The calculated β(–ωμl2) corresponding to various second order effects shows the following trend β(–2ω; ω,ω) > β(–ω; 0, ω) >β(0;0,0).

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Sekino, H. and Bartlett, R. J., J. Chem. Phys. 85, 976 (1986).Google Scholar
[2] Karna, S. P. and Dupuis, M., J. Comp. Chem., 12, 487 (1991).Google Scholar
[3] Karna, S. P., Chem. Phys. Lett. 214, 186 (1993).Google Scholar
[4] Karna, S. P., J. Chem. Phys. 104, 6590 (1996).Google Scholar
[5] Gisbergen, S. J. A. van, Snijders, J. G., and Barends, E. J., Phys. Rev. Lett. 78, 3097 (1997).Google Scholar
[6] (a) Strite, S., Morkoc, H., J. Vac. Sci. Technol. B 10, 1237 (1992). (b) H. Morkoc, S. Strite G. B. Gao, M. E. Lin, B. Sverdlov, M. Burns, J. Appl. Phys. 76, 1363 (1994).Google Scholar
[7] Levine, B. F., Phys. Rev. Lett. 22, 787 (1969).Google Scholar
[8] Phillips, J. C., Vechten, J. A. Van, Phys. Rev. 183, 709 (1969).Google Scholar
[9] Singh, S., Handbook of Lasers with selected data on optical technology; Ed. by Pressley, R. J. Chemical Rubber Company, Cleveland, 1971; 489.Google Scholar
[10] (a). Miragliotta, J., Wickenden, D. K., Appl. Phys. Lett. 69, 2095 (1996). (b). J. Miragliotta, D. K. Wick-enden, Phys. Rev. B. 53, 1388 (1996).Google Scholar
[11] Long, X-C., Myers, R. A., Brueck, S. R. J., Ramer, R., Zheng, K., Appl. Phys. Lett. 67, 1349 (1995).Google Scholar
[12] (a) Levine, Z. H., Allan, D. C., Phys. Rev. B 44, 12781 (1991). (b) 3. Chen, Z. H. Levine J. W. Wilkins, Appl. Phys. Lett. 66, 1129 (1995).Google Scholar
[13] Miragliotta, J. A., Wickenden, D. K., Semiconductors and Semimetals 57, 319 (1999).Google Scholar
[14] Lou, L., Wang, L., Chibante, L. P. F., Laaksonen, R. T., Nordlander, P., Smalley, R. E., J. Chem. Phys. 94, 8014 (1991).Google Scholar
[15] Lou, L., Nordlander, P., Smalley, R. E., J. Chem. Phys. 97, 1858 (1992).Google Scholar
[16] Schlecht, S., Schaefer, R., Woenckhaus, J., Becker, J. A., Chem. Phys. Lett. 246, 315 (1995).Google Scholar
[17] Haag, H., Petit, S., Gilliot, P., Levy, R., Briot, O., Aulombard, R. L., Mater. Sc. Engg. B 1997, 50, 197 (1997).Google Scholar
[18] Urdaneta, C., Coronigu, G., Clementi, E., IBM Technical Report KGN-13 (1987).Google Scholar
[19] Korambath, P. P., Singaraju, B. K., Karna, S. P., Int. 3. Quantum. Chem. 00, 111 (2000).Google Scholar
[20] Korambath, P. P., Singaraju, B. K., Karna, S. P., Phys. Rev B. (to be published)Google Scholar
[21] Korambath, P. P., Karna, S. P., (to be submitted)Google Scholar
[22] Bloembergen, N., Nonlinear Optics, Benjamin, New York. (1965)Google Scholar
[23] Karna, S. P., Prasad, P. N., Dupuis, M., J. Chem. Phys. 92, 7418 (1990)Google Scholar