Skip to main content Accessibility help

Real-Time Investigations on the Formation of Cu(In,Ga)Se2 While Annealing Precursors Produced with a Combination of Sputtering and Thermal Evaporation

  • Stefan Jost (a1), Frank Hergert (a2), Rainer Hock (a3) and Michael Purwins (a4)


We have investigated the formation of Cu(In,Ga)Se2 thin films by real-time X-ray diffraction (XRD) experiments while annealing differently deposited and composed stacked elemental layer (SEL) precursors.

The in-situ measurements during the selenization of bi-layered Cu/In precursors reveal, that the semiconductor formation process is similar for precursors with thermally evaporated or sputtered indium. In both cases, the formation of binary copper and indium selenides is observed at temperatures around the melting point of selenium. After subsequent selenium transfer reactions, the chalcopyrite CuInSe2 is formed from the educt phases Cu2-xSe and InSe.

The addition of gallium leads to the formation of the intermetallic precursor phase Cu9Ga4, which reduces the overall amount of copper and gallium selenides at process temperatures above 500 K. This causes an ongoing selenization in the indium selenium subsystem, which results in the formation of CuInSe2 from the educt phases Cu2-xSe and the selenium richest indium selenide g-In2Se3.



Hide All
1. Probst, V., Palm, J., Visbeck, S., Niesen, T., Tölle, R., Lerchenberger, A., Wendl, M., Vogt, H., Calwer, H., Stetter, W., and Karg, F., Sol. Energy Mater. Sol. Cells 90, 31153123 (2006).
2. Jost, S., Hergert, F., Hock, R., Purwins, M., and Enderle, R., Z. Krist. Suppl. 23, 124 (2006).
3. Jost, S., Hergert, F., Hock, R., Purwins, M., and Enderle, R., Physica Status Solidi A 203(11), 25812587 (2006).
4. Hammersley, A.P., ESRF, Internal Report ESRF97HA02T (1997).
5. Hammersley, A.P., Svensson, S. O., and Thompson, A., Nucl. Instr. Meth. A 346, 312321 (1994).
6. Hammersley, A. P., Svensson, S. O., Hanfland, M., Fitch, A. N., and Häusermann, D., High Pressure Research 14, 235248 (1996).
7. Rietveld, H.M., J. Appl. Cryst. 2, 6571 (1969).
8. Hergert, F., Hock, R., Weber, A., Purwins, M., Palm, J., and Probst, V., J. Phys. Chem. Solids 66 (11), 19031907 (2005).
9. Jost, S., Hergert, F., Hock, R., Schulze, J., Kirbs, A., Vofl, T., Purwins, M., and Schmid, M., Sol. Energy Mater. Sol. Cells 91(7), 636644 (2007).
10.Binary Alloy Phase Diagrams”, edited by Massalski, T., Okamoto, P. R., Subramanian, P. R., and Kacprzak, L., ASM International, Materials Park (USA) 3 volumes (1990).
11. Wolf, D., Ph.D. Thesis, University of Erlangen-Nürnberg (1998).
12. Hergert, F., Jost, S., Hock, R., Purwins, M., and Palm, J., Thin Solid Films 515, 58435847 (2007).
13. Palm, J., Probst, V., and Karg, F., Solar Energy 77, 757765 (2004).
14. Marudachalam, M., Hichri, H., Klenk, R., Birkmire, R. W., and Shafarman, W. N., Appl. Phys. Lett. 67, 39783980 (1995).
15. Purwins, M., Schmid, M., Berwian, P., Müller, G., Jost, S., Hergert, F., and Hock, R., Proceedings of the 21st European Photovoltaic Solar Energy Conference, Dresden, Germany, 4 –8 September 2006.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed