Skip to main content Accessibility help

Realization of silicon nanopillar arrays with controllable sidewall profiles by holography lithography and a novel single-step deep reactive ion etching

  • Yung-Jr Hung (a1), San-Liang Lee (a2), Brian J. Thibeault (a3) and Larry A. Coldren (a4)


A simple and efficient approach for fabricating silicon nanopillar arrays with a high aspect ratio and controllable sidewall profiles has been developed by using holographic lithography and a novel single-step deep reactive ion etching. During the etching process, scalloping of the sidewalls can be avoided while reserving the high mask selectivity and high etching rate. Besides, the sidewall angle of resultant patterns can be adjusted by tuning the composition of the gas mixture of single-step DRIE process. We further fabricate a tapered silicon nanopillar array and observe its photonic bandgap property. We believe that the good optical performance of this tapered silicon nanopillar array realized by the proposed approach shows the promising of this process for various applications.



Hide All
1 Murthy, B. R. J. Ng, K. K. Selamat, E. S. Balasubramanian, N. and Liu, W. T.Siliconnanopillar substrates for enhancing signal intensity in DNA microarrays,” Biosens.Bioelectron. 24, 723728 (2008).
2 Talin, A. A. Hunter, L. L. Leonard, F. and Rokad, B.Large area, dense silicon nanowirearray chemical sensors,” Appl. Phys. Lett. 89, 153102 (2006).
3 Qin, H. Kim, H.S. and Blick, R. H.Nanopillar arrays on semiconductor membranes aselectron emission amplifiers,” Nanotechnology 19, 095504 (2008).
4 Poborchii, V. Tada, T. T. Kanayama and Moroz, A.Silver-coated silicon pillar photoniccrystals: enhancement of a photonic band gap,” Appl. Phys. Lett. 82, 508510 (2003).
5 Tada, T. Poborchii, V. V. and Kanayama, T.Channel waveguides fabricated in 2D photoniccrystals of Si nanopillars,” Microelectr. Eng. 63, 259265 (2002).
6 Goldberger, J. Hochbaum, A. I. Fan, R. and Yang, P.Silicon vertically integrated nanowirefield effect transistors,” Nano Lett. 6, 973977 (2006).
7 Huang, M.J. Yang, C. R. Chiou, Y. C. and Lee, R. T.Fabrication of nanoporousantireflection surfaces on silicon,” Solar Energy Mater. & Solar Cells 92, 13521357 (2008).
8 Lin, G. R. Chang, T. C. Liu, E. S. Kuo, H. C. and Lin, H. S.Low refractive index Sinanopillars on Si substrate,” Appl. Phys. Lett. 90, 181923 (2007).
9 Tada, T. Poborchii, V. V. and Kanayama, T.Fabrication of photonic crystals consisting of Sinanopillars by plasma etching using self-formed masks,” J. J. Appl. Phys. 38, 72537256 (1999).
10 Kuo, C.W. Shiu, J. Y. and Chen, P.Size and shape-controlled fabrication of large-areaperiodic nanopillar arrays,” Chem. Mater. 15, 29172920 (2003).
11 Kuo, C.W. Shiu, J. Y. Chen, P. and Somorjai, G. A.Fabrication of size-tunable large-areaperiodic silicon nanopillar arrays with sub-10nm resolution,” J. Phys. Chem. B107, 99509953 (2003).
12 Chang, Y.F. Chou, Q.R. Lin, J.Y. and Lee, C.H.Fabrication of high-aspect-ratio siliconnanopillar arrays with the conventional reactive ion etching technique,” Appl. Phys. A86, 193196 (2007).
13 Hsu, C. H. Lo, H. C. Chen, C. F. Wu, C. T. Hwang, J. S. Das, D. Tsai, J. Chen, L.C. and Chen, K.H.Generally applicable self-masked dry etching technique for nanotip arrayfabrication,” Nano Lett. 4, 471475 (2004).
14 Bai, X. D. Xu, Z. Liu, S. Wang, E. G.Aligned 1D silicon nanostructure arrays by plasmaetching,” Sci. Technol. Adv. Mater. 6, 804808 (2005).
15 Ayon, A. A. Braff, R. Lin, C. C. Sawin, H. H. and Schmidt, M. A.Characterization of a timemultiplexed inductively coupled plasma etcher,” J. Electrochem. Soc. 146, 339349 (1999).
16 Wang, X. Zeng, W. Lu, G. Russo, O. L. and Eisenbraun, E.High aspect ratio Bosch etchingof sub-0.25 m trenches for hyperintegration applications,” J. Vac. Sci. Technol. B25, 13761381 (2007).
17 Choi, C.H. and Kim, C.J.Fabrication of a dense array of tall nanostructures over a large sample area with sidewall profile and tip sharpness control,” Nanotechnology 17, 53265333 (2006).
18 Morton, K. J, Nieberg, G. Bai, S. and Chou, S. Y, “Wafer-scale patterning of sub-40 nm diameter and high aspect ratio (50:1) silicon pillar arrays by nanoimprint and etching,” Nanotechnology 19, 345301 (2008).
19 Hung, Y.J. Lee, S.L. and Pan, Y.T. “Holographic realization and bandgap tolerance evaluation of hexagonal two-dimensional photonic crystals,” Intl. Conf. Optics and Photonics Taiwan'08, paper Sat-S8-02, Taiwan (2008)
20 Hung, Y.J. Lee, S.L. and Pan, Y.T. “Holographic realization of two-dimensional photonic crystal structures on silicon substrates,” Integrated Photonics and Nanophotonics Research and Applications (IPNRA'09), paper IWD5, Honolulu, Hawaii, USA (2009).
21 Hung, Y.J. Lee, S.L. and Coldren, L. A.Deep and tapered silicon photonic crystals for achieving anti-reflection and enhanced absorption,” Optics Express 18, 6841 (2010).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed