Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-25T01:07:51.625Z Has data issue: false hasContentIssue false

Reactions of H with C in Multicrystalline Si Solar-cell Materials

Published online by Cambridge University Press:  01 February 2011

Chao Peng
Affiliation:
chp205@Lehigh.edu, United States
Michael Stravola
Affiliation:
mjsa@scholarone.com, Lehigh University, Physics, Bethlehem, Pennsylvania, United States
Haoxiang Zhang
Affiliation:
haz207@Lehigh.edu, Lehigh University, Bethlehem, Pennsylvania, United States
Vijay Yelundur
Affiliation:
vyelundur@suniva.com, Georgia Institute of Technology, School of Electrical Engineering, Atlanta, Georgia, United States
Ajeet Rohatgi
Affiliation:
ajeet.rohatgi@ece.gatech.edu, United States
Lode Carnel
Affiliation:
Lode.Carnel@recgroup.com, REC Wafer AS, Porsgrunn, Norway
Mike Seacrist
Affiliation:
mseacrist@memc.com, MEMC Electronic Materials, St. Peters, Missouri, United States
Juris Kalejs
Affiliation:
jpkalejs1@aol.com, American Solar Technologies, 15 Tyngsboro Road, North Chelmsford, Massachusetts, 01863, United States, 978-251-3096, 978-251-4120
Get access

Abstract

Hydrogen is commonly introduced into silicon solar cells to reduce the deleterious effects of defects and to increase cell efficiency. When hydrogen is introduced into multicrystalline Si that is often used for the fabrication of solar cells, the H atoms become trapped by carbon impurities to produce defect structures known at H2*(C). These defects act as both a source and a sink for hydrogen in H-related defect reactions. IR spectroscopy has been used to determine what H- and C-related defects are formed in multicrystalline Si when the carbon concentration is varied. A process that is used by industry to introduce hydrogen into Si solar cells is the post-deposition annealing of a hydrogen-rich SiNx layer. The H2*(C) defects provide a strategy for estimating the concentration and penetration depth of the hydrogen that is introduced by this method.

Keywords

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Hahn, G. and Schönecker, A., J. Phys. Condens. Matter 16, R1615 (2004).Google Scholar
2 Buonassisi, T., Istratov, A. A., Pickett, M.D., Heuer, M., Kalejs, J. P., Hahn, G., Marcus, M. A., Lai, B., Cai, Z., Heald, S. M., Ciszek, T. F., Clark, R. F., Cunningham, D. W., Gabor, A. M., Joncyk, R., Narayanan, S., Sauar, E., and E. R., , Prog. Photovolt.: Res. Appl. 14, 513 (2006).Google Scholar
3 Stoddard, N., Wu, B., Maisano, L., Russell, R., Creager, J., Clark, R., and Fernandez, J.M., Proc. 18th Workshop on Crystalline Silcon Solar Cells and Modules, Vail, CO, Aug. 3-6, 2008, p. 7 Google Scholar
4 Aberle, A. G., Sol. Energy Mater. Sol. Cells 65, 239 (2001) reviews the SiNx passivation of c-Si solar cells and includes a historical overview.Google Scholar
5 Duerinckx, F. and Szlufcik, J., Sol. Energy Mater. Sol. Cells 72, 231 (2002).Google Scholar
6 Cuevas, A., Kerr, M. J., Schmidt, J., Proc. 3rd World Conf. on Photovoltaic Energy Conversion (IEEE Cat. No. 03CH37497), p. 913 (2003).Google Scholar
7 Dekkers, H. F. W., Dissertation, Catholic University of Leuven, 2008.Google Scholar
8 Stavola, M., in Identification of Defects in Semiconductors, Semiconductors and Semimetals', Vol. 51B, ed. Stavola, M. (Academic, Boston, 1991).Google Scholar
9 Pritchard, R. E., Tucker, J. H., Newman, R. C., and Lightowlers, E. C., Semicond. Sci. Technol. 14, 77 (1999).Google Scholar
10 Pearton, S.J., Corbett, J.W., Stavola, M., Hydrogen in Crystalline Semiconductors (Springer-Verlag, Berlin, 1992).Google Scholar
11 Fukata, N. and Suezawa, M., J. Appl. Phys. 87, 8361 (2000).Google Scholar
12 Markevich, V. P., Murin, L. I., Hermansson, J., Kleverman, M., Lindström, J. L., Fukata, N., Suezawa, M., Physica B 302–303, 220 (2001).Google Scholar
13 Hourahine, B., Jones, R., Öberg, S., Briddon, P. R., Markevich, V. P., Newman, R. C., Hermansson, J., Kleverman, M., Lindström, J. L., Murin, L. I., Fukata, N., and Suezawa, M., Physica B 308–310, 197 (2001).Google Scholar
14 McAfee, J. L. and Estreicher, S. K., Physica B 340–342, 637 (2003).Google Scholar
15 Lavrov, E. V., Hoffmann, L., Nielsen, B. Bech, Hourahine, B., Jones, R., Öberg, S., and Briddon, P. R., Phys. Rev. B 62, 12859 (2000).Google Scholar
16 Stavola, M., Chen, E. E., Fowler, W. B., Shi, G. A., Physica B 340–342, 39 (2003).Google Scholar
17 Stavola, M., Pearton, S.J., Lopata, J., and Dautremont-Smith, W.C., Appl. Phys. Lett. 50, 1086 (1987).Google Scholar
18 Jiang, F., Stavola, M., Rohatgi, A., Kim, D., Holt, J., Atwater, H., Kalejs, J., Appl. Phys. Lett. 83, 931 (2003).Google Scholar
19 Kleekajai, S., Jiang, F., Stavola, M., Yelundur, V., Nakayashiki, K., Rohatgi, A., Hahn, G., Seren, S., and Kalejs, J., J. Appl. Phys. 100, 093517 (2006).Google Scholar
20 Wieringen, A. Van, and Warmoltz, N., Physica 22, 849 (1956).Google Scholar