Skip to main content Accessibility help
×
Home

Reaction Processes for Low Temperature (<150°C) Plasma Enhanced Deposition of Hydrogenated Amorphous Silicon Thin Film Transistors on Transparent Plastic Substrates

  • Gregory N. Parsons (a1), Chien-Sheng Yang (a1), Tonya M. Klein (a1) and Laura Smith (a1)

Abstract

This article presents mechanisms for low temperature (<150°C) rf plasma enhanced chemical vapor deposition of silicon and silicon nitride thin films that lead to sufficient electronic quality for thin film transistor (TFT) fabrication and operation. For silicon deposition, hydrogen abstraction and etching, and silicon disproportionation reactions are identified that can lead to optimized hydrogen concentration and bonding environments at <150°C. Nitrogen dilution of SiH4/NH3 mixtures during silicon nitride deposition at low temperatures helps promote N-H bonding, leading to reduced charge trapping. Good quality amorphous silicon TFT's fabricated with a maximum processing temperature of 110°C are demonstrated on flexible transparent plastic substrates. Transistors formed with the same process on glass and plastic show linear mobilities of 0.33 and 0.12 cm2/Vs, respectively, with ION/IOFF ratios > 106.

Copyright

References

Hide All
[1] McCormick, C. S., Weber, C. E., Abelson, J. R., and Gates, S.M., Appl. Phys. Lett 70, 226227 (1997).
[2] Smith, P. M., Carey, P. G., and Sigmon, T. W., Appl. Phys. Lett. 70, 342343 (1997).
[3] Stein, A., Liss, A., Fields, S., Digest of 1997 Society Information Display International Symposium Digest of Technical Papers Volume XXVII, p. 817.
[4] Gates, S.M., Materials Research Society Symposium Proceedings Vol. 471, Spring 1997.
[5] Young, N.D., Harkin, G., Bunn, R.M., McCulloch, D.J., Wilks, R.W., Knapp, A.G., IEEE Electron Device Letters 18, 1920 (1997).
[6] Burns, S.J., Shanks, H.R., Constant, A.P., Gruber, C., Schmidt, D., Landin, A., and Olympie, F., Electrochemical Society Proceedings Volume 96–23, p.[382 (1996).
[7] Okamoto, S., Hishikawa, Y. and Tsuda, S., Japanese J. Appl. Phys. 35, 2633 (1996).
[8] Wieder, S., Rech, B., Beneking, C., Siebke, F., Reetz, W., and Wagner, H., 13th European Photovoltaic Solar Energy Conference, 1995.
[9] Hishikawa, Yoshihiro, Tsuge, Sadaji, Nakamura, Noboru, Tsuda, Shinya, Nakano, Shoichi, and Kuwano, Yukinori, J. Appl. Phys. 69, 508510 (1991).
[10] Feng, M.S., Liang, C.W., and Tseng, D., J. Electrochem. Soc. 141,10401045 (1994).
[11] Srinivasan, E., Lloyd, D.A., and Parsons, G.N., J.Vac.Sci. Technol. A 15, 77 (1997).
[12] Srinivasan, E., and Parsons, G.N., Appl. Phys. Lett. 72, 456458 (1998).
[12] Muramatsu, Y. and Yabumoto, N., Appl. Phys. Lett. 49, 1231 (1988).
[14] Yang, C.S. and Parsons, G.N., unpublished.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed