Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-19T23:08:35.495Z Has data issue: false hasContentIssue false

Reaction Chamber and Cathode Configurations in Arc Production of Fullerenes

Published online by Cambridge University Press:  15 February 2011

E. Pasqualini
Affiliation:
Dpto. Materiales. CAC. Comision Nacional de Energía Atómica. Av. Libertador 8250, (1429) Buenos Aires, Argentina
C. Podesta
Affiliation:
Faculatad de Ciencias Exactas y Naturales., UNBA
A. GarcÍa
Affiliation:
Faculatad de Ciencias Exactas y Naturales., UNBA
A. Rafael
Affiliation:
Faculatad de Ciencias Exactas y Naturales., UNBA
S. Dengra
Affiliation:
Faculatad de Ciencias Exactas y Naturales., UNBA
M. Paulozzi
Affiliation:
Faculatad de Ciencias Exactas y Naturales., UNBA
Get access

Abstract

The reaction chamber in the arc production of fullerenes was redesigned with a nozzle surrounding the decomposition zone to allow for clean collection of soot in a filtering cartridge. Quantitative analysis in the region of 300–430 nm in UV-visible spectra permits determination of the abundance of C60 and C70 in the soot. Calibrated curves of absorptivity for both pure fullerenes were employed. In equivalent conditions of current and pressure, electrographites of different origins have different decomposition rates and yields. A mechanism to interpret the cathodic deposit formation is proposed. Decomposition inside a closed cathodic cylinder yields 100% deposit.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

1. Kräitschmer, W., Lamb, L., Fostiropoulos, K., Huffman, D.. Nature 347, 354 (1990).Google Scholar
2. The Fullerenes, eds. Kroto, H., Fisher, J. and Cox, D. (Pergamon Press, 1993).Google Scholar
3. Lamb, L., Huffman, D.. J. Phys. Chem. Solids, 54, N°12, 1635 (1993).Google Scholar
4. Willard, H., Merrit, L. Jr., Dean, J., Selle, F. Jr., Instrumental Methods of Analysis, 7th ed., Ch. 7 (Wadsworth Publishing Company, 1988).Google Scholar
5. Wright, J.. Molecular Crystals (Cambridge University Press, 1987).Google Scholar
6. Sivaraman, N., Dhamodaran, R., Kaliappan, I., Srinivasan, T., Rao, P.V., Mathews, C.. J. Org. Chem. 57, 6077 (1992).Google Scholar
7. Ruoff, R., Tse, D., Malhotra, R., Lorents, D.. J. Phys. Chem. 97, 3379 (1993).Google Scholar
8. Welding Handbook, 7th ed. 1, 52 (American Welding Society, 1981).Google Scholar
9. Carslaw, H. and Jaeger, J.. 2nd ed. Ch. 4.5, 140 (Oxford at the Clarendon Press, 1959).Google Scholar
10. Nuclear Graphite, ed. Nightingale, R. (Academic Press, 1962).Google Scholar
11. Seraphin, S., Zhou, D. and Jiao, J.. Carbon 31, N°7, 1209 (1993).Google Scholar
12. Seraphin, S., Zhou, D., Jiao, J., Withers, J. and Loutfy, R.. Carbon 31, N°5, 685 (1993).Google Scholar
13. Ebbesen, T., Hiura, H., Fujita, J., Ochiai, Y., Matsui, S., Tanigaki, K.. Chem. Phys. Lett. 209, 83 (1993).Google Scholar
14. Zhou, O., Fleming, R., Murphy, D., Chen, C., Haddon, R., Ramirez, A., Glarum, S.. Science, 263, 1744, 25 March 1994.Google Scholar
15. Hoyaux, M.. Arc Physics (Springer-Verlag, New York Inc., 1968).Google Scholar