Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-24T02:58:03.023Z Has data issue: false hasContentIssue false

RDF Analysis of Ion-Amorphized SiO2 and SiC from Electron Diffraction using Post-Specimen Scanning in the Field-Emission Scanning Transmission Electron Microscope

Published online by Cambridge University Press:  10 February 2011

David C. Bell
Affiliation:
Center for Materials Science and Engineering
Anthony J. Garratt-Reed
Affiliation:
Center for Materials Science and Engineering
Linn W. Hobbst
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology Cambridge, MA, 02139
Get access

Abstract

Radial density functions (RDFs) provide important information about short- and ntermediaterange structure of topologically-disordered materials such as glasses and irradiation-amorphized materials. We have determined RDFs for irradiation-amorphized SiO2, AIPO4 and SiC by energy-filtered electron diffraction methods in a field-emission scanning transmission electron microscope (FEG-STEM) equipped with a digital parallel-detection electron energy-loss spectrometer. Post-specimen rocking was used to minimize the effects of spherical aberration in the objective lens, which interfere with the acquisition of data collected by pre-specimen rocking. Useful energy-filtered data has been collected beyond an angular range defined by q = 2 sin(Θ/2)/λ = 25 nm−1

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Qin, L. C. & Hobbs, L. W., J. Non-Cryst. Solids 192&193 (1995) p. 456462.Google Scholar
2. Sreeram, A. N., Hobbs, L. W., Bordes, N. and Ewing, R. C., Nucl. Instrum. Meth. B 116 (1996) p 126130.Google Scholar
3. Cowley, J.M., Diffraction Physics, 2nd ed. (North Holland Press, New York, 1990) p. 279284 Google Scholar
4. Bell, D. C.. Garratt-Reed, A. J. and Hobbs, L. W., Proc. 55th Ann. Mtg. MSA, ed. G. W. Bailey p. 1019.Google Scholar
5. Mozzi, R. L. and Warren, B. E., J. Appl. Cryst. 2 (1969) 164; A. C. Wright, “Neutron and X-Ray Amorphography,” in: Experimental Techniques of Glass Science, ed. C. J. Simmons and O. H. El-Bayoumi (Ceramic Transactions, American Ceramic Society, 1992), Chapter 8.Google Scholar
6. Sreeram, A. N., Qin, L.-C., Garratt-Reed, A. J. and Hobbs, L. W., Proc. 54th Ann. Mtg. MSA, ed. Zaluzec, N. and Bailey, G. W. (San Francisco Press, 1996) p. 702.Google Scholar
7. Lorch, E., J. Phys C 2 (1969) 229.Google Scholar
8. Cockayne, D. J. H. and MacKenzie, D. R., Acta Cryst. A44 (1988) 870; Z. Q. Liu, D. R. MacKenzie, D. J. H. Cockayne and D. M. Dwarte, Phil. Mag. B57 (1988) 753; D. A. MacKenzie, C. Davis, D. J. H. Cocakayne, D. A. Muller and A. M. Vassallo, Nature 355 (1992) 622.Google Scholar
9. Hobbs, L. W., Sreeram, A. N., Jesurum, C. E. and Berger, B. A., Nucl. Instrum. Meth. V 116 (1996) 18.Google Scholar
10. Wignall, G. D., Rohon, R. N., Longman, G. W. and Woodward, G. R., J. Mater. Sci. 24 (1977) 1039.Google Scholar
11. Weber, W. J. and Wang, L.-M., Nucl. Instrum. Meth. B 106 (1995) 298; W. J. Weber, L.-M. Wang and N. Yu, Nucl. Instrum. Meth. B 116 (1996) 322.Google Scholar
12. Snead, L. L. and Zinkle, S. J., Mater. Res. Soc. Symp. Proc. 439 (1997) 595.Google Scholar
13. Allen, C. W., Funk, L. L., Ryan, E.A. and Ockers, S. T., Nucl. Instrum. Meth. B 40& 41 (1989) 553.Google Scholar