Skip to main content Accessibility help
×
Home

RDF Analysis of Ion-Amorphized SiO2 and SiC from Electron Diffraction using Post-Specimen Scanning in the Field-Emission Scanning Transmission Electron Microscope

  • David C. Bell (a1), Anthony J. Garratt-Reed (a1) and Linn W. Hobbst (a2)

Abstract

Radial density functions (RDFs) provide important information about short- and ntermediaterange structure of topologically-disordered materials such as glasses and irradiation-amorphized materials. We have determined RDFs for irradiation-amorphized SiO2, AIPO4 and SiC by energy-filtered electron diffraction methods in a field-emission scanning transmission electron microscope (FEG-STEM) equipped with a digital parallel-detection electron energy-loss spectrometer. Post-specimen rocking was used to minimize the effects of spherical aberration in the objective lens, which interfere with the acquisition of data collected by pre-specimen rocking. Useful energy-filtered data has been collected beyond an angular range defined by q = 2 sin(Θ/2)/λ = 25 nm−1

Copyright

References

Hide All
1. Qin, L. C. & Hobbs, L. W., J. Non-Cryst. Solids 192&193 (1995) p. 456462.
2. Sreeram, A. N., Hobbs, L. W., Bordes, N. and Ewing, R. C., Nucl. Instrum. Meth. B 116 (1996) p 126130.
3. Cowley, J.M., Diffraction Physics, 2nd ed. (North Holland Press, New York, 1990) p. 279284
4. Bell, D. C.. Garratt-Reed, A. J. and Hobbs, L. W., Proc. 55th Ann. Mtg. MSA, ed. G. W. Bailey p. 1019.
5. Mozzi, R. L. and Warren, B. E., J. Appl. Cryst. 2 (1969) 164; A. C. Wright, “Neutron and X-Ray Amorphography,” in: Experimental Techniques of Glass Science, ed. C. J. Simmons and O. H. El-Bayoumi (Ceramic Transactions, American Ceramic Society, 1992), Chapter 8.
6. Sreeram, A. N., Qin, L.-C., Garratt-Reed, A. J. and Hobbs, L. W., Proc. 54th Ann. Mtg. MSA, ed. Zaluzec, N. and Bailey, G. W. (San Francisco Press, 1996) p. 702.
7. Lorch, E., J. Phys C 2 (1969) 229.
8. Cockayne, D. J. H. and MacKenzie, D. R., Acta Cryst. A44 (1988) 870; Z. Q. Liu, D. R. MacKenzie, D. J. H. Cockayne and D. M. Dwarte, Phil. Mag. B57 (1988) 753; D. A. MacKenzie, C. Davis, D. J. H. Cocakayne, D. A. Muller and A. M. Vassallo, Nature 355 (1992) 622.
9. Hobbs, L. W., Sreeram, A. N., Jesurum, C. E. and Berger, B. A., Nucl. Instrum. Meth. V 116 (1996) 18.
10. Wignall, G. D., Rohon, R. N., Longman, G. W. and Woodward, G. R., J. Mater. Sci. 24 (1977) 1039.
11. Weber, W. J. and Wang, L.-M., Nucl. Instrum. Meth. B 106 (1995) 298; W. J. Weber, L.-M. Wang and N. Yu, Nucl. Instrum. Meth. B 116 (1996) 322.
12. Snead, L. L. and Zinkle, S. J., Mater. Res. Soc. Symp. Proc. 439 (1997) 595.
13. Allen, C. W., Funk, L. L., Ryan, E.A. and Ockers, S. T., Nucl. Instrum. Meth. B 40& 41 (1989) 553.

RDF Analysis of Ion-Amorphized SiO2 and SiC from Electron Diffraction using Post-Specimen Scanning in the Field-Emission Scanning Transmission Electron Microscope

  • David C. Bell (a1), Anthony J. Garratt-Reed (a1) and Linn W. Hobbst (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed