Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T13:45:03.981Z Has data issue: false hasContentIssue false

Rational Design of Nanostructured Hybrid Materials for Photovoltaics

Published online by Cambridge University Press:  31 January 2011

Ioan Botiz
Affiliation:
ibotiz@anl.gov, Argonne National Laboratory, Center for Nanoscale Materials, Argonne, Illinois, United States
Seth B Darling
Affiliation:
darling@anl.gov, Argonne National Laboratory, Center for Nanoscale Materials, Argonne, Illinois, United States
Get access

Abstract

To develop efficient organic and/or hybrid organic-inorganic solar energy devices, it is necessary to use, among other components, an active donor–acceptor layer with highly ordered nanoscale morphology. In an idealized morphology, the effectiveness of internal processes is optimized leading to an efficient conversion of photons to electricity. Using a poly(3-hexylthiophene)-block-poly(L-lactide) rod-coil block copolymer as a structure-directing agent, we have rationally designed and developed an ordered nanoscale morphology consisting of self-assembled poly(3-hexylthiophene) donor domains of molecular dimension, each of them separated by fullerene C60 hydroxide acceptor domains. Using this morphological control, one can begin to probe structure-property relationships with unprecedented detail with the ultimate goal of maximizing the performance of future organic/hybrid photovoltaic devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Thompson, B. C. and Fréchet, J. M. J., Angew. Chem. Int. Ed. 47, 58 (2008); S. E. Shaheen, C. J. Brabec, N. S. Sariciftci et al., Appl. Phys. Lett. 78, 841 (2001); W.U. Huynh, J.J. Dittmer, and A.P. Alivisatos, Science 295, 2425 (2002); P. Peumans, S. Uchida, and S. R. Forrest, Nature 425, 158 (2003); G. Li, V. Shrotriya, Y. Yao et al., J. Appl. Phys. 98, 043704 (2005); T. Shiga, K. Takechi, and T. Motohiro, Sol. Energy Mat. Sol. Cells 90, 1849 (2006).10.1002/anie.200702506Google Scholar
2 Kim, Y., Cook, S., Tuladhar, S. M. et al., Nat. Mater. 5, 197 (2006).10.1038/nmat1574Google Scholar
3 Dai, J., Jiang, X., Wang, H. et al., Appl. Phys. Lett. 91, 253503 (2007); A. Gadisa, W. Mammo, L. M. Andersson et al., Adv. Funct. Mater. 17, 3836 (2007).10.1063/1.2824836Google Scholar
4 Lindner, S. M., Hüttner, S., Chiche, A. et al., Angew. Chem. Int. Ed. 45, 3364 (2006); C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, Adv. Funct. Mater. 11, 15 (2001); J.S. Salafsky, W.H. Lubberhuizen, and R.E.I. Schropp, Chem. Phys. Lett. 290, 297 (1998).10.1002/anie.200503958Google Scholar
5 Mandoc, M. M., Kooistra, F. B., Hummelen, J. C. et al., Appl. Phys. Lett. 91, 263505 (2007).10.1063/1.2821368Google Scholar
6 Reyes-Reyes, M., Kim, K., and Carroll, D. L., Appl. Phys. Lett. 87, 083506 (2005); F. Padinger, R. S. Rittberger, and N. S. Sariciftci, Adv. Funct. Mater. 13, 85 (2003); G. Yu, J. Gao, J. C. Hummelen et al., Science 270, 1789 (1995); W. Ma, C. Yang, X. Gong et al., Adv. Funct. Mater. 15, 1617 (2005).10.1063/1.2006986Google Scholar
7 Koetse, M. M., Sweelssen, J., Hoekerd, K. T. et al., Appl. Phys. Lett. 88, 083504 (2006); J. J. M. Halls, C. A. Walsh, N. C. Greenham et al., Nature 376, 498 (1995); M. M. Alam and S. A. Jenekhe, Chem. Mater. 16, 4647 (2004).10.1063/1.2176863Google Scholar
8 McDonald, S. A., Konstantatos, G., Zhang, S. et al., Nat. Mater. 4, 138 (2005); N. C. Greenham, X. Peng, and A. P. Alivisatos, Phys. Rev. B 54, 17628 (1996); C. Y. Kwong, A. B. Djurisic, P. C. Chui et al., Chem. Phys. Lett. 384, 372 (2004).10.1038/nmat1299Google Scholar
9 Yang, X. and Loos, J., Macromolecules 40 (5), 1353 (2007); S. Gunes, H. Neugebauer, and N.S. Sariciftci, Chem. Rev. 107 (4), 1324 (2007); J. K. J. van Duren, X. Yang, J. Loos et al., Adv. Funct. Mater. 14, 425 (2004); S.-S. Sun, Sol. Energy Mater. Sol. Cells 79, 257 (2003); S.B. Darling, J. Phys. Chem. B 112, 8891 (2008).10.1021/ma0618732Google Scholar
10 Sommer, M., Lindner, S. M., and Thelakkat, M., Adv. Funct. Mater. 17, 1493 (2007); X. L. Chen and S. A. Jenekhe, Macromolecules 29, 6189 (1996); G. Tu, H. Li, M. Forster et al., Macromolecules 39, 4327 (2006).10.1002/adfm.200600634Google Scholar
11 Darling, S.B., Prog. Polym. Sci. 32, 1152 (2007).10.1016/j.progpolymsci.2007.05.004Google Scholar
12 Boudouris, B. W., Frisbie, C. D., and Hillmyer, M. A., Macromolecules 41, 67 (2008).10.1021/ma071626dGoogle Scholar
13 Halls, J. J. M., Pichler, K., Friend, R. H. et al., Appl. Phys. Lett. 68, 3120 (1996).10.1063/1.115797Google Scholar
14 Thanki, P. N., Dellacherie, E., and Six, J L., Appl. Surf. Sci. 253, 2758 (2006).Google Scholar
15 Dai, C.-A., Yen, W.-C., Lee, Y.-H. et al., J. Am. Chem. Soc. 129, 11036 (2007); T. Heiser, G. Adamopoulos, M. Brinkmann et al., Thin Solid Films 511-512, 219 (2006); B.D. Olsen, D. Alcazar, V. Krikorian et al., Macromolecules 41, 58 (2008).10.1021/ja0733991Google Scholar